Environmental Monitoring and Assessment

, Volume 155, Issue 1–4, pp 493–507 | Cite as

Vertical distribution of heavy metals in grain size fractions in sedimentary rocks: Mosina–Krajkowo water well field, Poland

  • M. Frankowski
  • M. SiepakEmail author
  • A. Zioła
  • K. Novotný
  • T. Vaculovič
  • J. Siepak


The paper presents the results of heavy metals determination in samples of sedimentary rocks from the Mosina–Krajkowo water well field (Poland). The concentration of heavy metals was analysed by type of rock (sand, gravel, warp, silt, till, and clay). Variation of heavy metal concentrations with depth was studied taking into account the age series of the rocks (fluvial sediments of the modern Warta River valley, sediments of the Baltic Glaciation, tills of the Middle-Polish Glaciation, sediments of the Masovian Interglacial (Holstein), tills of the Poznań series) and granulometric fractions. The grain sizes considered included: >2.0, 2.0–1.0, 1.0–0.5, 0.5–0.25, 0.25–0.1, 0.1–0.063, and <0.063 mm. The concentrations of the heavy metals studied were found to change with the type of rock, age series, and granulometric fraction. The levels of the metals were determined by the technique of atomic absorption spectrometry with flame atomisation (F-AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES).


Heavy metals Soil profiles Sedimentary rock Grain size Mosina–Krajkowo water well field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abolino, O., Aceto, M., Malandrino, M., Mentasti, E., Sarzanini, C., & Petrella, F. (2002). Heavy metals in agricultural soils from Piedmont, Italy. Distribution, speciation and chemometric data treatment. Chemosphere, 49(6), 545–557.CrossRefGoogle Scholar
  2. Acar, O. (2006). Determination of cadmium, chromium, copper and lead in sediments and soil samples by electrothermal atomic absorption spectrometry using zirconium containing chemical modifiers. Analytical Sciences, 22(5), 731–735.CrossRefGoogle Scholar
  3. Ariano, D. C., Bolan, N. S., Vangronsveld, J., & Wenzel, W. W. (2005). Heavy metals. In D. Hillel (Ed.), Encyclopedia of soils in the environment (pp. 175–182). Amsterdam, The Netherlands: Elsevier.Google Scholar
  4. Cuong, D. T., & Obbard, J. P. (2006). Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure. Applied Geochemistry, 21(8), 1335–1346.CrossRefGoogle Scholar
  5. Da̧browski, S. (1990). Hydrogeology and conditions of groundwater protection in the Wielkopolska Buried Valley. Warsaw: SGGW-AR (in Polish).Google Scholar
  6. Deng, H., Åström, M., & Björklund, A. (1998). Geochemical and mineralogical properties of sulfide-bearing fine-grained sediments in Finland. Environmental Geology, 36(1–2), 37–44.CrossRefGoogle Scholar
  7. Einax, J. W., Truckenbrodt, D., & Kampe, O. (1998). River pollution data interpreted by means of chemometric methods. Microchemical Journal, 58(3), 315–324.CrossRefGoogle Scholar
  8. Elbanowska, H., Zerbe, J., Góski, J., & Siepak, J. (2001). Physico-chemical studies of soils for hydrogeological purposes. Poznań: Adam Mickiewicz University Press (in Polish).Google Scholar
  9. Frankowski, M., Sobczyński, T., & Zioła, A. (2005). The effect of grain size structure on the content of heavy metals in alluvial sediments of the Odra River. Polish Journal of Environmental Studies, 14(5), 81–86.Google Scholar
  10. Frankowski, M., Zioła, A., Siepak, M., & Siepak, J. (2008). Analysis of heavy metals in particular granulometric fractions of bottom sediments in the Mała Wełna river (Poland). Polish Journal of Environmental Studies, 17(3), 343–350.Google Scholar
  11. Iwegbue, C. M. A., Isirimah, N. O., Igwe, C., & Williams, E. S. (2006). Characteristic levels of heavy metals in soil profiles of automobile mechanic waste dumps in Nigeria. Environmentalist, 26(2), 123–128.CrossRefGoogle Scholar
  12. Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126(2), 225–233.CrossRefGoogle Scholar
  13. Kabala, C., & Singh, B. R. (2001). Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality, 30(2), 485–492.CrossRefGoogle Scholar
  14. Kirpichtchikova, A. T., Manceau, A., Spadini, L., Panfili, F., Marcus, M. A., & Jacquet, T. (2005). Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochimica et Cosmochimica Acta, 70(9), 2163–2190.CrossRefGoogle Scholar
  15. Kowalski, A., Siepak, M., Frankowski, M., Zioła, A., & Siepak, J. (2007). Determination of mercury in sedimentary rock samples using cold vapour atomic fluorescence spectrometry. Oceanological and Hydrobiological Studies, 36(3), 143–153.Google Scholar
  16. Lis, J., & Piaseczna, A. (1995). Geochemical Atlas of Poland. Warsaw: Polish Geological Institute (in Polish).Google Scholar
  17. Mazerski, J. (2000). Basic chemometrics. Gdañsk: Gdansk University of Technology Press (in Polish).Google Scholar
  18. Miller, J. N., & Miller, J. C. (2005). Statistics and chemometrisc for analytical chemistry. Harlow: Pearson Education Limited.Google Scholar
  19. National Institute of Standards and Technology (2002). Certificate of analysis. Standard Reference Material 2709. San Joaquin Soil.Google Scholar
  20. Peuraniemi, V., Aario, R., & Pulkkinen, P. (1997). Mineralogy and geochemistry of the clay fraction of till in northern Finland. Sedimentary Geology, 111(1–4), 313–327.CrossRefGoogle Scholar
  21. Quevauviller, Ph. (1998). Operationally defined extraction procedures for soil and sediment analysis I. Standardization. Trends in Analytical Chemistry, 17(5), 289–298.CrossRefGoogle Scholar
  22. Quevauviller, Ph., Van der Sloot, H. A., Ure, A., Muntau, H., Gomez, A., & Rauret, G. (1996). Conclusions of the workshop: harmonization of leaching/extraction tests for environmental risk assessment. The Science of the Total Environment, 178, 133–139.CrossRefGoogle Scholar
  23. Quevauviller, P. H., Rauret, G., López-Sánchez, J.-F., Rubio, R., Ure, A., & Muntau, H. (1997). Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. The Science of the Total Environment, 205(2–3), 223–234.Google Scholar
  24. Siepak, M. (2005). Arsenic, antimony and selenium in the ground water of the Warta River valley between Poznań and Śrem. Geologos 7. Monographiae 1. Poznań: Bogucki (in Polish).Google Scholar
  25. Simeonov, V., Massart, D. L., Andreev, G., & Tsakovski, S. (2000). Assessment of metal pollution based on multivariate statistical modeling of ‘hot spot’ sediments from the Black Sea. Chemosphere, 41(9), 1411–1417.CrossRefGoogle Scholar
  26. Singh, K. P., Malik, A., Mohan, D., Sinha, S., & Singh, V. K. (2005). Chemometric data analysis of pollutants in wastewater—a case study. Analytica Chimica Acta, 532(1), 15–25.CrossRefGoogle Scholar
  27. StatSoft Inc. (2005). STATISTICA (data analysis software system), version 7.1.Google Scholar
  28. Sutherland, R. A. (2005). Comparison between non-residual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment. Applied Geochemistry, 17(4), 353–365.CrossRefGoogle Scholar
  29. Sutherland, R. A., Tack, F. M. G., Tolosa, C. A., & Verloo, M. G. (2001). Metal extraction from road sediment using different strength reagents: impact on anthropogenic contaminant signals. Environmental Monitoring and Assessment, 71(3), 221–242.CrossRefGoogle Scholar
  30. Sutherland, R. A., Tack, F. M. G., Ziegler, A. D., & Bussen, J. O. (2004). Metal extraction from road-deposited sediments using nine partial decomposition procedures. Applied Geochemistry, 19(6), 947–955.CrossRefGoogle Scholar
  31. Szczuciński, W., Niedzielski, P., Kozak, L., Frankowski, M., Zioła, A., & Lorenc, S. (2007). Effect of rainy season on mobilization of contaminants from tsunami deposit left in the coastal zone of Thailand by the 26 December 2004 tsunami. Environmental Geology, 53(2), 253–264.CrossRefGoogle Scholar
  32. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.CrossRefGoogle Scholar
  33. Tüzen, M. (2003). Determination of trace metals in the River Yesilirmak sediments in Tokat, Turkey using sequential extraction procedure. Microchemical Journal, 74(1), 105–110.CrossRefGoogle Scholar
  34. Ure, A. M. (1996). Single extraction schemes for soil analysis and related applications. The Science of the Total Environment, 178, 3–10.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. Frankowski
    • 1
  • M. Siepak
    • 2
    Email author
  • A. Zioła
    • 1
  • K. Novotný
    • 3
  • T. Vaculovič
    • 3
  • J. Siepak
    • 1
  1. 1.Department of Water and Soil AnalysisAdam Mickiewicz UniversityPoznańPoland
  2. 2.Department of Hydrogeology and Water ProtectionAdam Mickiewicz UniversityPoznańPoland
  3. 3.Laboratory of Atomic Spectrochemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations