Analyzing deforestation rates, spatial forest cover changes and identifying critical areas of forest cover changes in North-East India during 1972–1999

  • Nikhil Lele
  • P. K. Joshi


Deforestation is recognized as one of the most significant component in LULC and global changes scenario. It is imperative to assess its trend and the rates at which it is occurring. The changes will have long-lasting impact on regional climate and in turn on biodiversity. In North-East India, one of the recognized global biodiversity hotspots, approximately 30% of total forest cover is under pressure of rapid land use changes. This region harbors variety of rare and endemic species of flora and fauna. It also has a strong bearing on regional climatic conditions. Extensive shifting cultivation, compounded by increasing population pressure and demands for agriculture land are the prime drivers in addition to other proximate drivers of deforestation. It is therefore of prime concern to analyse forest cover changes in the region, assess rate of change and extent and to identify the areas, which show repetitive changes. We analyzed forest cover maps from six temporal datasets based on satellite data interpretation, converted to geospatial database since 1972 till 1999. The states of Meghalaya, Nagaland and Tripura show highest changes in forest cover. Arunachal Pradesh shows least dynamic areas and maintains a good forest cover owing to its topographical inaccessibility in some areas. The present study reports the forest cover changes in the region using geospatial analysis and analyse them to devise proper management strategies.


Critical area of forest change Deforestation rates GIS North-east India Spatial analysis 


  1. Apan, A. A. & Peterson, J. A (1998). Probing tropical deforestation – the use of GIS and statistical analysis of georeferenced data. Applied Geography (Sevenoaks, England), 18(2), 137–152. doi:10.1016/S0143-6228(98)00004-6.CrossRefGoogle Scholar
  2. Armenteras, D., Gast, F., & Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation, 113(2), 245–256. doi:10.1016/S0006-3207(02)00359-2.CrossRefGoogle Scholar
  3. Armenteras, D., Rudas, G., Rodriguez, N., Sua, S., & Romero, M. (2006). Pattern and cause of deforestation in Columbian Amazon. Ecological Indicators, 6, 353–368.CrossRefGoogle Scholar
  4. Behera, M. D., Kushwaha, S. P. S., & Roy, P. S. (2005). Rapid assessment of biological richness in a part of Eastern Himalaya: An integrated three-tier approach. Forest Ecology and Management, 207(3), 363–384. doi:10.1016/j.foreco.2004.10.070.CrossRefGoogle Scholar
  5. Boege, E. (2001). Protegiendo lo Nuestro. CONABIO-UNAM, Mexico, DF.Google Scholar
  6. Burgess, J. C. (1993). Timber production, timber trade and tropical deforestation. Ambio, 22(2–3), 136–143.Google Scholar
  7. Champion, H. G., & Seth, S. K. (1968). A revised survey of forest types of India. New Delhi: New Delhi Govt. Publication.Google Scholar
  8. Chowdhury, R. R. (2006). Driving forces of tropical deforestation: The role of remote sensing and spatial models. Singapore Journal of Tropical Geography, 27(1), 82–101. doi:10.1111/j.1467–9493.2006.00241.x.CrossRefGoogle Scholar
  9. Comber, A. J., Fisher, P. F., & Wadsworth, R. A.(2003). Identifying land cover change using a semantic statistical approach: First results. In Proceedings of the Seventh International Conference on GeoComputation (pp. 8–10). University of Southampton, UK.Google Scholar
  10. Conservation International (2005). Biodiversity Hotspots. Himalaya. Accessed 4 May 2007.
  11. FAO (1993). Forest resource division, forest assessment 1990. Rome: Tropical Countries, FAO.Google Scholar
  12. Fearnside, P. M. (2001). Saving tropical forests as a global warming countermeasure: An issue that divides the environmental movement. Ecological Economics, 39(2), 167–184. doi:10.1016/S0921–8009(01)00225–7.CrossRefGoogle Scholar
  13. Foley, J. A., DeFries, R., Asner, G. P., et al. (2005). Global consequences of land use. Science, 309, 570–574. doi:10.1126/science.1111772.CrossRefGoogle Scholar
  14. Foster, D. R. (1992). Land-use history (1730–1900) and vegetation dynamics in central New England. Journal of Ecology, 80(4), 753–771. doi:10.2307/2260864.CrossRefGoogle Scholar
  15. FSI (Forest survey of India) (1999). State of forest report 1999. Dehradun: Forest survey of India.Google Scholar
  16. FSI (Forest survey of India) (2001). State of forest report 2001. Dehradun: Forest survey of India.Google Scholar
  17. FSI (Forest survey of India) (2003). State of forest report 2003. Dehradun: Forest survey of India.Google Scholar
  18. Fuller, R. M., Smith, G. M., & Devereux, B. J. (2003). The characterization and measurement of land cover change through remote sensing: Problems in operational applications? International Journal of Applied Earth Observation and Geoinformatics, 4(3), 243–253.CrossRefGoogle Scholar
  19. Geist, H. J., & Lambin, E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation. Bioscience, 52(2), 143–149. doi:10.1641/0006–3568(2002)052[0143:PCAUDF]2.0.CO;2.CrossRefGoogle Scholar
  20. Geist, H. J., & Lambin, E. F. (2004). Dynamic causal patterns of desertification. Bioscience, 54(9), 817–829. doi:10.1641/0006–3568(2004)054[0817:DCPOD]2.0.CO;2.CrossRefGoogle Scholar
  21. Gupta, H. K. (2007). Deforestation and forest cover changes in the Himachal Himalaya, India. International Journal of Ecology and Environmental Sciences, 33(2–3), 207–218.Google Scholar
  22. Hall, F. G., Botkin, D. B., Strebel, D. E., Woods, K. D., & Goetz, S. J. (1991). Large-scale patterns of forest succession as determined by remote sensing. Ecology, 72(2), 628–640. doi:10.2307/2937203.CrossRefGoogle Scholar
  23. Heywood, V. H., & Watson, R. T. (1995). Global biodiversity assessment, UNEP. Cambridge: Cambridge University Press.Google Scholar
  24. IIRS (2002a). Biodiversity characterization at landscape level in eastern Himalayas using satellite remote sensing and geographic information systems. Indian institute of remote sensing. National Remote Sensing Agency, Department of Space, Government of India. Dehra Dun.Google Scholar
  25. IIRS (2002b). Biodiversity characterization at landscape level in western Ghats India using satellite remote sensing and geographic information systems. Indian Institute of Remote Sensing. National Remote Sensing Agency, Department of Space, Government of India. Dehra Dun.Google Scholar
  26. IIRS (2002c). Biodiversity characterization at landscape level in Andamans and Nikobar islands using satellite remote sensing and geographic information systems. Indian Institute of Remote Sensing. National Remote Sensing Agency, Department of Space, Government of India. Dehra Dun.Google Scholar
  27. Krishnaswamy, J., Kiran, M. C., & Ganeshaiah, K. N. (2004). Tree model based eco-climatic vegetation classification and fuzzy mapping in diverse tropical deciduous ecosystems using multi-season NDVI. International Journal of Remote Sensing, 25(6), 1185–1205. doi:10.1080/0143116031000149989.CrossRefGoogle Scholar
  28. Joshi, P. K., Lele, N., & Aggarwal, S. P. (2006a). Entropy as an indicator of fragmented landscape-Northeast India case study. Current Science, 91(3), 276–278.Google Scholar
  29. Joshi, P. K., Roy, P. S., Singh, S., Agrawal, S., & Yadav, D. (2006b). Characterization of vegetation cover in India, using multi-temporal IRS Wide Field Sensor (WiFS) data. Remote Sensing of Environment, 103(2), 190–202. doi:10.1016/j.rse.2006.04.010.CrossRefGoogle Scholar
  30. Keys, E., & McConnell, W. J. (2005). Global change and the intensification of agriculture in the tropics. Global Environmental Change, 15, 320–327. doi:10.1016/j.gloenvcha.2005.04.004.CrossRefGoogle Scholar
  31. Lambin, E. F., Baulies, X., Bockstael, N., et al. (1999). Land-use and land-cover change (LUCC): Implementation strategy. IGBP Report No. 48/IHDP Report No. 10. IGBP/IHDP, Stockholm and Bonn.Google Scholar
  32. Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and cover change. Annual Review of Environment and Resources, 28, 205–241. doi:10.1146/ Scholar
  33. Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., et al. (2001). The causes of land-use and landcover change: Moving beyond the myths. Global Environmental Change, 11(4), 261–269. doi:10.1016/S0959-3780(01)00007-3.CrossRefGoogle Scholar
  34. Lele, N., Joshi, P. K., & Aggarwal, S. P. Assessing forest fragmentation in northeastern region (NER) of India using landscape matrices. Ecological Indicators, 8, 657–663. doi:10.1016/j.ecolind.2007.10.002. (in press).
  35. Lele, N., Joshi, P. K., & Aggarwal, S. P. (2007). Fractional vegetation cover analysis for understanding vegetation cover dynamics in Northeast India. International Journal of Geoinformatics, 1(3), 63–70.Google Scholar
  36. Maki, S., Kalliola, R., & Vuorinen, K. (2001). Road construction in the Peruvian Amazon: Process, causes and consequences. Environmental Conservation, 28, 199–214.CrossRefGoogle Scholar
  37. Mas, J. F., Velázquez, A., Díaz-Gallegos, J. R., Sauced, R. M., Alcántara, C., Bocco, G., et al. (2004). Assessing land use/cover changes: A nationwide multidate spatial database for Mexico. International Journal of Applied Earth Observations and Geoinformation, 5(4), 249–261. doi:10.1016/j.jag.2004.06.002.CrossRefGoogle Scholar
  38. Mertens, B., & Lambin, E. F. (2000). Land-cover-change trajectories in Southern Cameroon. Annals of the Association of American Geographers. Association of American Geographers, 90, 467–494. doi:10.1111/0004-5608.00205.CrossRefGoogle Scholar
  39. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Ken, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. doi:10.1038/35002501.CrossRefGoogle Scholar
  40. Nagendra, H., Southworth, J., & Tucker, C. (2003). Accessibility as a determinant of landscape transformation in western Honduras: Linking pattern and process. Landscape Ecology, 18, 141–158. doi:10.1023/A:1024430026953.CrossRefGoogle Scholar
  41. National Remote Sensing Agency (1983). Report of nationwide mapping of forest and non-forest areas using Landsat False Color Composite for period 1972–75 and 1982–85.Google Scholar
  42. Noss, R. F. (2001). Beyond Kyoto: Forest management in a time of rapid climate change. Conservation Biology, 15(3), 578–590. doi:10.1046/j.1523-1739.2001.015003578.x.CrossRefGoogle Scholar
  43. Ojima, D. S., Galvin, K. A., & Turner, B. L., II. (1994). The global impact of land-use change. Bioscience, 44(5), 300–304. doi:10.2307/1312379.CrossRefGoogle Scholar
  44. Pandit, M. K., Sodhi, N., Pin Koh, L., Bhaskar, A., & Brook, B. (2007). Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodiversity and Conservation, 16, 153–163. doi:10.1007/s10531-006-9038-5.CrossRefGoogle Scholar
  45. Peterson, T. A., Ortega, M. A., Bartley, J., Sanchez, V., Soberon, J., Buddemeier, R. H., et al. (2002). Future projections for Mexican faunas under global climate change scenarios. Nature, 416, 626–629. doi:10.1038/416626a.CrossRefGoogle Scholar
  46. Petit, T., & Scudder, E. L. (2001). Quantifying processes of land-cover change by remote sensing: Resettlement and rapid land-cover changes in south-eastern Zambia. International Journal of Remote Sensing, 22, 3435–3456. doi:10.1080/01431160010006881.CrossRefGoogle Scholar
  47. Petit, C. C., & Lambin, E. F. (2002). Long-term land-cover changes in Belgian Ardennes (1775–1929): Model based reconstruction vs. historical maps. Global Change Biology, 8(7), 616–630. doi:10.1046/j.1365-2486.2002.00500.x.CrossRefGoogle Scholar
  48. Ramesh, B. R., Pascal, J. P., & Nouguier, C. (1997). Atlas of Endemics of the Western Ghats. Distribution of tree species in the evergreen and semi-evergreen forests. Pondicherry: French Institute.Google Scholar
  49. Roughgarden, J., Running, S. W., & Matson, P. A. (1991). What does remote sensing do for ecology? Ecology, 72(6), 1918–1922. doi:10.2307/1941546.CrossRefGoogle Scholar
  50. Roy, P. S., & Joshi, P. K. (2002). Forest cover assessment in north-east India – the potential of temporal wide swath satellite sensor data (IRS-1C WiFS). International Journal of Remote Sensing, 23(22), 4881–4896. doi:10.1080/01431160110114475.CrossRefGoogle Scholar
  51. Roy, P. S., & Tomar, S. (2000). Biodiversity characterization at landscape level using geospatial modelling technique. Biological Conservation, 95(1), 95–109. doi:10.1016/S0006-3207(99)00151-2.CrossRefGoogle Scholar
  52. Sherbinin, A., Carr, D., Cassels, S., Jiang, L. (2007). Population and environment. Annual Review of Environment and Resources, 32, 5.1–5.29.CrossRefGoogle Scholar
  53. Shukla, J., Nobre, C., & Sellers, P. (1990). Amazon deforestation and climate change. Science, 247, 1322–1325. doi:10.1126/science.247.4948.1322.CrossRefGoogle Scholar
  54. Sodhi, N. S., & Brook, B. W. (2006). Southeast Asian biodiversity in crisis. London, UK: Cambridge University Press.Google Scholar
  55. Southworth, J., Nagendra, H., & Tucker, C. (2002). Fragmentation of a Landscape: Incorporating landscape metrics into satellite analyses of land-cover change. Landscape Research, 27(3), 253–269. doi:10.1080/01426390220149511.CrossRefGoogle Scholar
  56. Turner, B. L., Skole, D., Sanderson, S., et al. (1995). Land use and land-cover change science/research plan. IGBP Report No. 35/HDP Report No. 7. IGBP/IHDP, Stockholm/Geneva.Google Scholar
  57. Wakeel, A., Rao, K. S., Maikhuri, R. K., & Saxena, K. G. (2005). Forest management and land use/cover changes in a typical micro watershed in the mid elevation zone of Central Himalaya, India. Forest Ecology and Management, 213(1–3), 229–242. doi:10.1016/j.foreco.2005.03.061.CrossRefGoogle Scholar
  58. Wood, C. H., & Skole, D. L. (1998). Linking satellite, census, and survey data to study deforestation in the Brazilian Amazon. In D. Liverman, et al. (Eds.), People and pixels: Linking remote sensing and social science (pp. 70–93). Washington, DC: National Academy Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.ATREEBangaloreIndia
  2. 2.TERI UniversityNew DelhiIndia

Personalised recommendations