Environmental Monitoring and Assessment

, Volume 156, Issue 1–4, pp 141–157 | Cite as

Near-surface ozone levels and trends at rural stations in France over the 1995–2003 period

  • Pierre Sicard
  • Patrice Coddeville
  • Jean-Claude Galloo


There is a considerable interest in quantifying near-surface ozone concentrations and associated trends, as they serve to define the impacts on ozone of the anthropogenic precursors reductions and to evaluate the effects of emission control strategies. A statistical test has been used to the ozone air concentrations measured in the French rural monitoring network stations, called MERA, in order to bring out spatio-temporal trends in air quality in France over the 1995–2003 period. The non-parametric Mann–Kendall test has been developed for detecting and estimating monotonic trends in the time series and applied in our study at annual values: mean, 98th percentile and median based on hourly averaged ozone concentrations and applied to daily maxima. In France, when averaged overall 9 stations between 1995 and 2003, a slight increasing trend of the O3 levels (+0.6 ± 1.3% year − 1) is observed, which is strongly influenced by the concentrations of the high altitude stations. In stations below 1000 m a mean rate of −0.48% year − 1 from annual average concentrations, of −0.45% year − 1 for medians and of +0.56% year − 1 for P.98 over the 1995–2003 period were obtained. In stations above 1,000 m a mean rate of +1.75% year − 1 from annual averages values, of +4.05% year − 1 for medians and of +2.55% year − 1 for P.98 were calculated over the 1997–2003 period. This situation is comparable to the one observed in other countries. In Europe and in France a reduction of precursor emissions is observed whereas a slight increasing trend of the O3 levels is observed over the 1995–2003 period. One reason is the non-linearity of chemical ozone production with respect to precursor emissions. Possible explanations are an increase in near-surface ozone values caused by a reduced ozone titration by reduced NO x , the meteorological parameters change, an increase in bio-geogenic compound concentrations, the intercontinental transport from North America and Asia and the influence of stratospheric–tropospheric exchanges. These possible explanations must be interpreted carefully as on the short time scales considered.


Mann–Kendall test Ozone Rural area Sen’s method Spatial trend Temporal trend 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arends, B. G., Baard, J. H., & Ten Brink, H. M. (1997). Trends in summer sulphate in Europe. Atmospheric Environment, 31, 4063–4072. doi:10.1016/S1352-2310(97)00283-5.CrossRefGoogle Scholar
  2. Atkinson, R. (1991). Kinetics and mechanisms of gas-phase reactions of the NO3 radical with organic compounds. Journal of Geophysical Chemistry, 20, 459–507.Google Scholar
  3. Borbon, A., Coddeville, P., Locoge, N., & Galloo, J. C. (2004). Characterising sources and sinks of rural VOC in eastern France. Chemosphere, 57, 931–942. doi:10.1016/j.chemosphere.2004.07.034.CrossRefGoogle Scholar
  4. Brönnimann, S., Buchmann, B., & Wanner, H. (2002). Trends in near-surface ozone concentrations in Switzerland: The 1990s. Atmospheric Environment, 36, 2841–2852. doi:10.1016/S1352-2310(02)00145-0.CrossRefGoogle Scholar
  5. Brönnimann, S., Schuepbach, E., Zanis, P., Buchmann, B., & Wanner, H. (2000). A climatology of regional background ozone at different elevations in Switzerland (1992–1998). Atmospheric Environment, 34, 5191–5198. doi:10.1016/S1352-2310(00)00193-X.CrossRefGoogle Scholar
  6. Brühl, C., Pöschl, U., Crutzen, P. J., & Steil, B. (2000). Acetone and PAN in the upper troposphere: Impact on ozone production from aircraft emissions. Atmospheric Environment, 34, 3931–3938. doi:10.1016/S1352-2310(00)00159-X.CrossRefGoogle Scholar
  7. Chan, C. Y., Chan, L. Y., & Harris, J. M. (2004). Urban and background ozone trend in 1984–1999 at subtropical Hong Kong, South China. Ozone: Science & Engineering, 25, 513–522. doi:10.1080/01919510390481829.Google Scholar
  8. Charron, A., Plaisance, H., Sauvage, S., Coddeville, P., Galloo, J. C., & Guillermo, R. (2000). A study of the source–receptor relationships influencing the acidity of precipitation collected at a rural site in France. Atmospheric Environment, 34, 3665–3674. doi:10.1016/S1352-2310(00)00096-0.CrossRefGoogle Scholar
  9. De Leeuw, F. A. A. M. (2000). Trends in ground level ozone concentrations in the European Union. Environmental Science & Policy, 3, 189–199. doi:10.1016/S1462-9011(00)00090-3.CrossRefGoogle Scholar
  10. De Leeuw, F. A. A. M., Sluyter, R., & De Paus, T. (1999). Air pollution by ozone in Europe in 1997 and summer 1998. EEA-Topic Report 3/1999. Copenhagen: European Environment Agency.Google Scholar
  11. Derwent, R. G., Simmonds, P. G., Manning, A. J., & Spain, T. G. (2007). Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland. Atmospheric Environment, 41, 9091–9098. doi:10.1016/j.atmosenv.2007.08.008.CrossRefGoogle Scholar
  12. Derwent, R. G., Simmonds, P. G., Seuring, S., & Dimmer, C. (1998). Observation and interpretation of the seasonal cycles in the surface concentration of ozone and carbon monoxide at Mace Head, Ireland from 1990 to 1994. Atmospheric Environment, 32, 145–157. doi:10.1016/S1352-2310(97)00338-5.CrossRefGoogle Scholar
  13. Derwent, R. G., Stevenson, D. S., Collins, W. J., & Johnson, C. E. (2004). Intercontinental transport and the origins of the ozone observed at surface sites in Europe. Atmospheric Environment, 38, 1891–1901. doi:10.1016/j.atmosenv.2004.01.008.CrossRefGoogle Scholar
  14. Fall, R. (1999). Biogenic emissions of volatile organic compounds from higher plants. In C. N. Hewitt (Ed.), Reactive hydrocarbons in the atmosphere (Chapter 2, pp. 41–96). London: Academic.CrossRefGoogle Scholar
  15. Fehsenfeld, F., Chameides, W. L., & Rodgers, M. O. (1992). Ozone precursor relationship in the ambient atmosphere. Journal of Geophysical Research, 97, 6037–6055.Google Scholar
  16. Folkins, I., & Chatfield, R. (2000). Impact of acetone on ozone production and OH in the upper troposphere at high NOx. Journal of Geophysical Research, 105, 11585–11599. doi:10.1029/2000JD900067.CrossRefGoogle Scholar
  17. Frischer, T., Studnicka, M., Gartner, C., Tauber, E., Horak, F., Veiter, A., et al. (1999). Lung function growth and ambient ozone. A three year population study in school children. American Journal of Respiratory and Critical Care Medicine, 160, 390–396.Google Scholar
  18. Fusco, A. C., & Logan, J. A. (2003). Analysis of 1970–1995 trends in tropospheric ozone at Northern Hemisphere midlatitudes with the GEOS-CHEM model. Journal of Geophysical Research, 108, ACH 4.1–ACH 4.25.CrossRefGoogle Scholar
  19. Gardner, M. W., & Dorling, S. R. (2000). Meteorologically adjusted trends in UK daily maximum surface ozone concentrations. Atmospheric Environment, 34, 171–176. doi:10.1016/S1352-2310(99)00315-5.CrossRefGoogle Scholar
  20. Guenther et al. (1993). Isoprene and monoterpene emission rate variability — model evaluations and sensitivity analyses. Journal of Geophysical Research—Atmospheres, 98, 12609–12617.CrossRefGoogle Scholar
  21. Hirsch, R. M., Alexander, R. B., & Smith, R. A. (1991). Selection of methods for the detection and estimation of trends in water quality. Water Resources Research, 27, 803–813. doi:10.1029/91WR00259.CrossRefGoogle Scholar
  22. Holland, D. M., Caragea, P., & Smith, R. L. (2004). Regional trends in rural sulfur concentrations. Atmospheric Environment, 38, 1673–1684. doi:10.1016/j.atmosenv.2003.10.044.CrossRefGoogle Scholar
  23. Hůnová, I., Šantroch, J., & Ostatnická, J. (2004). Ambient air quality and deposition trends at rural stations in the Czech Republic during 1993–2001. Atmospheric Environment, 38, 887–898. doi:10.1016/j.atmosenv.2003.10.032.CrossRefGoogle Scholar
  24. Jacob, D. J., Logan, J. A., & Murti, P. P. (1999). Effect of rising Asian emissions on surface ozone in the United States. Geophysical Research Letters, 26, 2175–2178. doi:10.1029/1999GL900450.CrossRefGoogle Scholar
  25. Jaroslawski, J., Obnińska, B., & Bogucka, M. (2006). Surface ozone variability in Poland, 1995–2005. Geophysical Research Abstracts, 8, 09040.Google Scholar
  26. Jobson, B. T., Wu, Z., Hastie, D. R., Niki, H., & Barrie, L. A. (1994). Seasonal trends of isoprene, C2–C5 alkanes, and acetylene at a remote Boreal Site in Canada. Journal of Geophysical Research, 99, 1589–1599. doi:10.1029/93JD00424.CrossRefGoogle Scholar
  27. Kuebler, K., Van den Bergh, H., & Russell, A. G. (2001). Long term trends of primary and secondary pollutant concentrations in Switzerland and their response to emission controls and economic changes. Atmospheric Environment, 35, 1351–1363. doi:10.1016/S1352-2310(00)00401-5.CrossRefGoogle Scholar
  28. Kvaalen, H., Solberg, S., Clarke, N., Torp, T., & Aamlid, D. (2002). Time series study of concentrations of \(\text{SO}_{4}^{2-}\) and H +  in precipitation and soil waters in Norway. Environmental Pollution, 117, 215–224. doi:10.1016/S0269-7491(01)00271-8.CrossRefGoogle Scholar
  29. Lee, Y. N., et al. (2006). Ozone photochemistry and elevated isoprene during the UK heatwave of august 2003. Atmospheric Environment, 40, 7598–7613. doi:10.1016/j.atmosenv.2006.06.057.CrossRefGoogle Scholar
  30. Lee, Y. N., Zhou, X., & Hallock, K. (1995). Atmospheric carbonyl compounds at a rural southeastern United States site. Journal of Geophysical Research, 100, 25933–25944. doi:10.1029/95JD02605.CrossRefGoogle Scholar
  31. Lin, X., Melo, O. T., Hastie, D. R., Shepson, P. B., Niki, H., & Bottenheim, J. W. (1991). A case study of ozone production in a rural area of central Ontario. Atmospheric Environment, 26, 311–324.Google Scholar
  32. Logan, J. A. (1985). Tropospheric ozone: Seasonal behaviour, trends and anthropogenic influence. Journal of Geophysical Research, 90, 10463–10482. doi:10.1029/JD090iD06p10463.CrossRefGoogle Scholar
  33. Logan, J. A., et al. (1999). Trends in the vertical distribution of ozone: A comparison of two analyses of ozonesonde data. Journal of Geophysical Research, 104, 26373–26400. doi:10.1029/1999JD900300.CrossRefGoogle Scholar
  34. NABEL. (2003). La pollution de l’air 2002. Cahier de l’Environnement n°360, published by l’OFEFP, Berne (Switzerland).Google Scholar
  35. Neuman, J. A., et al. (2001). In situ measurements of HNO3, NOy, NO and O3 in the lower stratosphere and upper troposphere. Atmospheric Environment, 35, 5789–5797. doi:10.1016/S1352-2310(01)00354-5.CrossRefGoogle Scholar
  36. Nilles, M. A., & Conley, B. E. (2001). Changes in the chemistry of precipitation in the United States, 1981–1998. Water, Air, and Soil Pollution, 130, 409–414. doi:10.1023/A:1013889302895.CrossRefGoogle Scholar
  37. Olsyna, K. J., Luria, M., & Meagher, J. F. (1997). The correlation of temperature and rural ozone levels in south-eastern USA. Atmospheric Environment, 31, 3011–3022. doi:10.1016/S1352-2310(97)00097-6.CrossRefGoogle Scholar
  38. Oltmans, S. J. (1994). Surface ozone measurements from a global network. Atmospheric Environment, 28, 9–24. doi:10.1016/1352-2310(94)90019-1.CrossRefGoogle Scholar
  39. Ordóňez, C., Mathis, H., Furger, M., & Henne, S. (2005). Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmospheric Chemistry and Physics, 5, 1187–1203.CrossRefGoogle Scholar
  40. Plaisance, H., Coddeville, P., Guillermo, R., & Roussel, I. (1996). Spatial variability and source identification of rural precipitation chemistry in France. The Science of the Total Environment, 180, 257–270. doi:10.1016/0048-9697(95)04943-6.CrossRefGoogle Scholar
  41. Prévôt, A. S. H., Stoehelin, J., & Kok, G. L. (1997). The Milan photoxidant plume. Journal of Geophysical Research, 102, 23375–23388. doi:10.1029/97JD01562.CrossRefGoogle Scholar
  42. Roemer, M. (1996). Trends of tropospheric ozone over Europe. Ph.D. thesis, University of Utrecht, Netherlands.Google Scholar
  43. Ruoho-Airola, T., Anttila, P., & Salmi, T. (2004). Airborne sulfur and nitrogen in Finland, trends and exposure in relation to air transport sector. Journal of Environmental Monitoring, 6, 1–11 doi:10.1039/b309380h.CrossRefGoogle Scholar
  44. Salmi, T., Määttä, A., Ruoho-Airola, T., Anttila, P., & Amnell, T. (2002). Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and Sen’s slope estimates. The Excel template application makesens. Publications on air quality 31. Helsinki: Finnish Meteorological Institute.Google Scholar
  45. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389. doi:10.2307/2285891.CrossRefGoogle Scholar
  46. Seto, S., Nakamura, A., Noguchi, I., Ohizumi, T., Fukuzaki, N., Toyama, S., et al. (2002). Annual and seasonal trends in chemical composition of precipitation in Japan during 1989–1998. Atmospheric Environment, 36, 3505–3517. doi:10.1016/S1352-2310(02)00270-4.CrossRefGoogle Scholar
  47. Sicard, P. Coddeville P., Sauvage S., & Galloo J. C. (2005). Trends surface ozone background levels at rural stations in France over the period 1995–2003. Proceedings of The Changing Chemical Climate of the European Atmosphere, First ACCENT Symposium, Urbino, Italy. p. 229.Google Scholar
  48. Sicard, P., Coddeville, P., Sauvage, S., & Galloo, J. C. (2007). Trends in chemical composition of wet-only precipitation at rural French monitoring stations over the 1990–2003 period. Water, Air and Soil Pollution: Focus, 7(1–3), 49–58.Google Scholar
  49. Simmonds, P. G., Derwent, R. G., Manning, A. L., & Spain, G. (2004). Significant growth in surface ozone at Mace Head, Ireland, 1987–2003. Atmospheric Environment, 38, 4769–4778. doi:10.1016/j.atmosenv.2004.04.036.CrossRefGoogle Scholar
  50. Sirois, A. (1998). WMO/EMEP Workshop on Advanced Statistical Methods and their application to Air Quality Data sets. Helsinki.Google Scholar
  51. Solberg, S., Dye, C., & Schmidbauer, N. (1996). Carbonyls and non-methane hydrocarbons at rural European sites from the Mediterranean to the Artic. Journal of Atmospheric Chemistry, 25, 33–66. doi:10.1007/BF00053285.CrossRefGoogle Scholar
  52. Solmon, F., Sarrat, C., Serça, D., Tulet, P., & Rosset, R. (2004). Isoprene and monoterpènes biogenic emissions in France: Modeling and impact during a regional pollution episode. Atmospheric Environment, 38, 3853–3865. doi:10.1016/j.atmosenv.2004.03.054.CrossRefGoogle Scholar
  53. Steinbacher, M., Henne, S., Dommen, J., Wiesen, P., & Prevot, A. S. H. (2004). Nocturnal trans-alpine transport of ozone and its effects on air quality on the Swiss Plateau. Atmospheric Environment, 38, 4539–4550. doi:10.1016/j.atmosenv.2004.05.008.CrossRefGoogle Scholar
  54. Staehelin, J., Thudium, J., Buehler, R., Volz-Thomas, A., & Graber, W. K. (1994). Trends in surface ozone concentrations at Arosa (Switzerland). Atmospheric Environment, 28, 75–87. doi:10.1016/1352-2310(94)90024-8.CrossRefGoogle Scholar
  55. Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38, 3431–3442. doi:10.1016/j.atmosenv.2004.03.030.CrossRefGoogle Scholar
  56. Volz, A., & Kley, D. (1988). Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature, 332, 240–242. doi:10.1038/332240a0.CrossRefGoogle Scholar
  57. Wang, J. L., et al. (2002). Validation of ozone precursor measurement through inter-comparison with NOx and Co measurement. Atmospheric Environment, 36, 3041–3047. doi:10.1016/S1352-2310(02)00102-4.CrossRefGoogle Scholar
  58. WMO. (1999). Scientific assessment of ozone depletion: 1998. Geneva: WMO—Global Ozone Research and Monitoring Project, report n°44.Google Scholar
  59. Yue, S., & Pilon, P. (2002). Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology (Amsterdam), 259, 254–271. doi:10.1016/S0022-1694(01)00594-7.CrossRefGoogle Scholar
  60. Zanis, P., Schuepbach, E., Scheel, H. E., Baudenbacher, M., & Buchmann, B. (1999). Inhomogeneity and trends in the surface ozone record (1988–1996) at Jungfraujoch in the Swiss Alps. Atmospheric Environment, 33, 3777–3786. doi:10.1016/S1352-2310(99)00088-6.CrossRefGoogle Scholar
  61. Zimmermann, F., Lux, H., & Maenhaut, W. (2003). A review of air pollution and atmospheric deposition dynamics in Southern Saxony, Germany, Central Europe. Atmospheric Environment, 37, 671–691. doi:10.1016/S1352-2310(02)00829-4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Pierre Sicard
    • 1
  • Patrice Coddeville
    • 1
  • Jean-Claude Galloo
    • 1
  1. 1.Département Chimie et EnvironnementEcole des Mines de DouaiDouaiFrance

Personalised recommendations