Skip to main content

Advertisement

Log in

Development of tiger habitat suitability model using geospatial tools—a case study in Achankmar Wildlife Sanctuary (AMWLS), Chhattisgarh India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Geospatial tools supported by ancillary geo-database and extensive fieldwork regarding the distribution of tiger and its prey in Anchankmar Wildlife Sanctuary (AMWLS) were used to build a tiger habitat suitability model. This consists of a quantitative geographical information system (GIS) based approach using field parameters and spatial thematic information. The estimates of tiger sightings, its prey sighting and predicted distribution with the assistance of contextual environmental data including terrain, road network, settlement and drainage surfaces were used to develop the model. Eight variables in the dataset viz., forest cover type, forest cover density, slope, aspect, altitude, and distance from road, settlement and drainage were seen as suitable proxies and were used as independent variables in the analysis. Principal component analysis and binomial multiple logistic regression were used for statistical treatments of collected habitat parameters from field and independent variables respectively. The assessment showed a strong expert agreement between the predicted and observed suitable areas. A combination of the generated information and published literature was also used while building a habitat suitability map for the tiger. The modeling approach has taken the habitat preference parameters of the tiger and potential distribution of prey species into account. For assessing the potential distribution of prey species, independent suitability models were developed and validated with the ground truth. It is envisaged that inclusion of the prey distribution probability strengthens the model when a key species is under question. The results of the analysis indicate that tiger occur throughout the sanctuary. The results have been found to be an important input as baseline information for population modeling and natural resource management in the wildlife sanctuary. The development and application of similar models can help in better management of the protected areas of national interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braunisch, C., Bullmann, K., Graf, R. F., & Hirzel, A. H. (2008). Living on the edge—Modeling habitat suitability for species at the edge of their fundamental niche. Ecological Modelling, 214(2–4), 153–167. doi:10.1016/j.ecolmodel.2008.02.001.

    Article  Google Scholar 

  • Burgman, M. A., & Lindenmayer, D. B. (1998). Conservation biology for the Australian environment. Sydney: Surrey Beatty and Sons.

    Google Scholar 

  • Burgman, M. A., Breininger, D. R., Duncan, B. W., & Ferson, S. (2001). Setting reliability bounds on habitat suitability indices. Ecological Applications, 11, 70– 78. doi:10.1890/1051-0761(2001)011[0070:SRBOHS]2.0.CO;2.

    Article  Google Scholar 

  • Drury, K. L. S., & Candelaria, J. F. (2008). Using model identification to analyze spatially explicit data with habitat, and temporal, variability. Ecological Modelling, 214(2–4), 305–315. doi:10.1016/j.ecolmodel.2008.02.009.

    Article  Google Scholar 

  • Dzeroski, S., Grbovic, J., Walley, W. J., & Kompare, B. (1997). Using machine learning techniques in the construction of models: II data analysis with rule induction. Ecological Modelling, 95, 95–111. doi:10.1016/S0304-3800(96)00029-4.

    Article  Google Scholar 

  • ESRI (1999). ArcView GIS vers. 3.2. Redlands, CA, USA: Environmental Systems Research Institute, Inc.

    Google Scholar 

  • Fieberg, J., & Jenkins, K. J. (2005). Assessing uncertainty in ecological systems using global sensitivity analyses: A case example of simulated wolf reintroduction effects on elk. Ecological Modelling, 187, 259–280. doi:10.1016/j.ecolmodel.2005.01.042.

    Article  Google Scholar 

  • Hackett, C., & Vamnclay, J. K. (1998). Mobilizing expert knowledge of tree growth with the PLANTGRO and INFER systems. Ecological Modelling, 106, 233–246. doi:10.1016/S0304-3800(97)00185-3.

    Article  Google Scholar 

  • Hirzel, A. H., Hausser, J., & Perrin, N. (2006). Biomapper 3.2. Lab. For conservation biology. University of Lausanne, Lausanne. http://www.unil.ch/biomapper.

  • Hirzel, A. H., Helfer, V., & M’etral, F. (2001). Assess ing habitat-suitability models with a virtual species. Ecological Modelling, 145, 111–121. doi:10.1016/S0304-3800(01)00396-9.

    Article  Google Scholar 

  • Horst, H. S., Dijkhuizen, A. A., Huirne, R. B. M., & De Leeuw, P. W. (1998). Introduction of contagious animal diseases into The Netherlands: Elicitation of expert opinions. Livestock Production Science, 53, 253–264. doi:10.1016/S0301-6226(97)00098-5.

    Article  Google Scholar 

  • Mackenzie, D. I., & Royle, J. A. (2005). Designing occupancy studies: General advice and allocating survey effort. Journal of Applied Ecology, 42, 1105–1114. doi:10.1111/j.1365-2664.2005.01098.x.

    Article  Google Scholar 

  • Marcot, B. G. (2006). Characterizing species at risk I: Modeling rare species under the Northwest Forest Plan. Ecology and Society, 11, 10.

    Google Scholar 

  • Möltgen, J., Schmidt, B., & Kuhn, W. (1999). Landscape editing with knowledge-based measure deductions for ecological planning. In P. Agouris & A. Stefanidis (Eds.), ISD’99—Integrated spatial databases. Lecture notes in computer science 1737. Berlin: Springer.

    Chapter  Google Scholar 

  • Pearce, J. L., & Boyce, M. S. (2006). Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43, 405–412. doi:10.1111/j.1365-2664.2005.01112.x.

    Article  Google Scholar 

  • Smith, C., Felderhof, L., & Bosch, O. J. H. (2007). Adaptive management: Making it happen through participatory systems analysis. Systems Research and Behavioral Science, 24, 567–587.

    Article  Google Scholar 

  • SPSS (1988). SPSS-X user’s guide (3rd ed). Chicago: SPSS Inc.

    Google Scholar 

  • Stoms, D. M., Davis, F. W., & Cogan, C. B. (1992). Sensitivity of wildlife habitat models to uncertainties in GIS data. Photogrammetric Engineering and Remote Sensing, 58, 843–850.

    Google Scholar 

  • USFWS (1980). Habitat evaluation procedures report ESM 102. Washington, DC, USA: United States Fish and Wildlife Service.

    Google Scholar 

  • USFWS (1996) Habitat evaluation procedures report 870 FW 1. Washington, DC, USA: United States Fish and Wildlife Service.

    Google Scholar 

  • Venterink, H. G. M. O., & Wassen, M. J. (1997). A comparison of six models predicting vegetation response to hydrological habitat change. Ecological Modelling, 101, 347–361. doi:10.1016/S0304-3800(97)00062-8.

    Article  Google Scholar 

  • Wightmann, R. (1995). GIS-based forest management planning in New Brunswick. Proceedings of ninth annual symposium on geographic information systems in natural resources management (Vol. 2, pp. 503–506) Vancouver, BC, Canada. GIS World.

  • Yamada, K., Elith, J., McCarthy, M., & Zerger, A. (2003). Eliciting and integrating expert knowledge for wildlife habitat modeling. Environmental Modelling, 165, 251–264.

    Google Scholar 

  • Zaniewski, A. E., Lehmann, A., & Overton, J. M. (2002). Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns. Ecological Modelling, 157, 261–280. doi:10.1016/S0304-3800(02)00199-0.

    Article  Google Scholar 

  • Zhu, A. X. (1999). A personal construct-based knowledge acquisition process for natural resource mapping. International Journal of Geographical In formation Science, 13, 119–141. doi:10.1080/136588199241382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Joshi, P.K., Kumar, M. et al. Development of tiger habitat suitability model using geospatial tools—a case study in Achankmar Wildlife Sanctuary (AMWLS), Chhattisgarh India. Environ Monit Assess 155, 555–567 (2009). https://doi.org/10.1007/s10661-008-0455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0455-7

Keywords

Navigation