Environmental Monitoring and Assessment

, Volume 155, Issue 1–4, pp 419–429 | Cite as

Ecotoxicological sediment evaluations in marine aquaculture areas of Chile

  • Anny Rudolph
  • Paulina Medina
  • Carolina Urrutia
  • Ramón Ahumada
Article

Abstract

Given its geographic characteristics, the southern Chilean fjord area is subjected to growing environmental pressure from the development of diverse forms of aquaculture (i.e., fish, algae, shellfish). The sediments accumulate substances as a natural sink, and ecotoxicology assays offer a reliable and robust proxy for sediment quality analyses. This study’s objective was to establish a mid-range toxicity base line for the sediments in the region by applying a battery of non-specific ecotoxicological assays. Sediment samples (28) were collected in the channels and fjords studied during the CIMAR-Fiordos 11 cruise (July 2005). The sediments were evaluated using different species endemic to the eastern Pacific as targets: Ampelisca araucana, Tisbe longicornis, Arbacia spatuligera, and Dunaliella tertiolecta. The conditions for each assay were reported previously. Of the four species used as ecotoxicological tools, only D. tertiolecta differed significantly from the control group (negative) in terms of its growth. This difference could be attributed to nutrient enrichment. In general, we concluded that, although local changes occurred in the sediments, the mesoscale magnitude of the ecotoxicological alterations was small. Nonetheless, a surveillance program should be implemented that would allow us to follow-up and analyze the changes that are taking place in the systems on broader scales of time and space.

Keywords

Multiple ecotoxicology assays Sediment quality Estuarine zone Marine areas of Chile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, G., Rudolph, A., & Ahumada, R. (2005). Calidad de los sedimentos de puertos de la I y VIII Región, Chile. In XXV congreso de ciencias del Mar y XI congreso latinoamericano de ciencias del Mar. 16–20 May 2005 (pp. 216). Viña del Mar, Chile.Google Scholar
  2. Altamirano-Chovar, C., Rudolph, A., & Sepúlveda, R. (2006). Differential sensitivity to human influence in juvenile Semimytilus algosus (Gould, 1850) (Mollusca: Mytilidae) from four coastal sites in south-central Chile. Bulletin of Environmental Contamination and Toxicology, 77, 71–178. doi:10.1007/s00128-006-1047-2.CrossRefGoogle Scholar
  3. Arévalo, V., Inda, F., Bay-Schmith, E., & Larraín, A. (2001). Bioensayo de fertilización con erizo de mar (Arbacia spatuligera) para fiscalizar la maniobra de recambio de lastre limpio en los buques. Ciencia y Tecnología del Mar, 24, 61–69.Google Scholar
  4. Arizzi, N. A., Losso, C., Libralato, G., Tagliapietra, D., Pantani, C., & Vopli, A. (2006). Is a 1:4 elutriation radio reliable? Ecotoxicological comparison of four different sediment water proportions. Ecotoxicology and Environmental Safety, 65, 306–313. doi:10.1016/j.ecoenv.2005.08.010.CrossRefGoogle Scholar
  5. Astorga, M. I., & Silva, N. (2006). Textura, materia orgánica, carbono orgánico y nitrógeno orgánico en sedimentos marinos superficiales de la X Región. In Informes preliminares Crucero CIMAR-Fiordos 11. Comité Oceanográfico Nacional—Chile (pp. 253–261). Valparaíso, Chile.Google Scholar
  6. Brown, J. R., Gowen, R. J., & McLusky, D. S. (1987). The effect of salmon farming on the benthos of a Scottish sea loch. Journal of Experimental Marine Biology and Ecology, 109, 39–51. doi:10.1016/0022-0981(87)90184-5.CrossRefGoogle Scholar
  7. Buschmann, A. H., Riquelme, V. A., Hernández, M. C., Varela, D., Jiménez, J. E., Henríquez, L. A., et al. (2006). A review of the impacts of salmonid farming on marine coastal ecosystems in Southeast Pacific. ICES Journal of Marine Science, 63, 1338–1345. doi:10.1016/j.icesjms.2006.04.021.CrossRefGoogle Scholar
  8. Buschmann, A. H., Troell, M., & Kautsky, N. (2001). Integrated algal farming: A review. Cahiers de Biologie Marine, 42, 83–90.Google Scholar
  9. Byers, S. C. H., Mills, C. E. L., & Steward, P. L. (1978). A comparison of methods of determining organic carbon in marine sediments with suggestions for a standard method. Hydrobiologia, 58(1), 43–47. doi:10.1007/BF00018894.CrossRefGoogle Scholar
  10. Cáceres, M., Valle-Levinson, A., Sepúlveda, H., & Holderied, K. (2002). Transverse variability of flow and density in a Chilean fjord. Continental Shelf Research, 22, 1683–1698. doi:10.1016/S0278-4343(02)00032-8.CrossRefGoogle Scholar
  11. Carrasco, F., & Arcos, D. (1984). Life history and production of a cold-temperate population of sublittoral amphipod Ampelisca araucana. Marine Ecology Progress Series, 14, 245–252. doi:10.3354/meps014245.CrossRefGoogle Scholar
  12. Casado-Martínez, M. C., Buceta, J. L., Belzunce, M. J., & DelValls, T. A. (2006). Using sediment quality guidelines for dredged material management in commercial port from Spain. Environment International, 32, 388–396. doi:10.1016/j.envint.2005.09.003.CrossRefGoogle Scholar
  13. Chapman, P. M. (1995). Bioassay testing for Australia as part of water quality assessment programmes. Australian Journal of Ecology, 20, 7–19. doi:10.1111/j.1442-9993.1995.tb00517.x.CrossRefGoogle Scholar
  14. Dinnel, P. A., & Strober, Q. J. (1985). Methodology and analysis of sea urchin embryo bioassays. In Fisheries research institute, circular no. 85 (pp. 319). Seattle, WA: University of Washington.Google Scholar
  15. Elderfield, H. (1978). Chemical variability in estuaries. In Biochemistry of estuarine sediment proceeding of a UNESCO/ SCOR Workshop, Belgium, December, 1976 (pp. 171–178).Google Scholar
  16. Finney, D. J. (1971). Probit analysis, 3rd edn. Cambridge University Press. 333 pp.Google Scholar
  17. Fuentes-Ríos, D., Orrego, R., Rudolph, A., Mendoza, G., Gavilán, J. F., & Barra, R. (2005). EROD activity and biliary fluorescence in Schroederichthys chilensis (Guichenot 1848): Biomarkers of PAH exposure in coastal environments of the Pacific Ocean. Chemosphere, 61, 192–199. doi:10.1016/j.chemosphere.2005.02.062.CrossRefGoogle Scholar
  18. González, E. (1991). Actual state of gammaridean amphipoda taxonomy and catalogue of species from Chile. Hydrobiologia, 223, 47–68. doi:10.1007/BF00047628.CrossRefGoogle Scholar
  19. González, H. E., Hebbeln, D., Iriarte, J. L., & Marchant, M. (2004). Downward fluxes of faecal material and microplankton at 2,300 m depth in the oceanic area off Coquimbo (30°S), Chile, during 1993–1995. Deep-sea Research. Part II. Topical Studies in Oceanography, 51, 2457–2474. doi:10.1016/j.dsr2.2004.07.027.CrossRefGoogle Scholar
  20. Grande, R., Di Pietro, S., Di Campli, E., Di Bartolomeo, S., Filareto, B., & Cellini, L. (2007). Bio-toxicological assays to test water and sediment quality. Journal of Environmental Science and Health Part A, 42, 33–38.Google Scholar
  21. Gulley, D. D., Boelter, A. M., & Bergman, H. L. (1988). Toxstat 2.1. Fish Physiology and Toxicology Laboratory, Department of Zoology and Physiology, University of Wyoming, WY, USA.Google Scholar
  22. Hargrave, B. T., Duplisea, D. E., Pfieffer, E., & Wildish, D. (1993). Seasonal changes in benthic fluxes of dissolved oxygen and ammonium associated with marine cultured Atlantic salmon. Marine Ecology Progress Series, 96, 249–257. doi:10.3354/meps096249.CrossRefGoogle Scholar
  23. Iriarte, J. L., González, H. E., Liu, K. K., Rivas, C., & Velenzuela, C. (2007). Spatial and temporal variability of chlorophyll and primary productivity in surface water of southern Chile (41.5°–43°S). Estuarine, Coastal and Shelf Science, 74, 471–480 doi:10.1016/j.ecss.2007.05.015.CrossRefGoogle Scholar
  24. Izquierdo, C., Usero, J., & Gracia, I. (1997). Speciation of heavy metals in sediments from salt marshes on the Southern Atlantic coast of Spain. Marine Pollution Bulletin, 34(2), 123–128. doi:10.1016/S0025-326X(96)00059-8.CrossRefGoogle Scholar
  25. Larraín, A., Riveros, A., Silva, J., & Bay-Schmith, E. (1999). Toxicity of metals and pesticides using the sperm cell bioassays with the sea urchin Arbacia spatuligera. Bulletin of Environmental Contamination and Toxicology, 62, 749–757. doi:10.1007/s001289900936.CrossRefGoogle Scholar
  26. Larraín, A., Soto, E., & Bay-Schmith, E. (1998b). Assessment of sediment in San Vicente Bay, Central Chile, using the amphipod Ampellisca araucana. Bulletin of Environmental Contamination and Toxicology, 61, 363–369. doi:10.1007/s001289900771.CrossRefGoogle Scholar
  27. Larraín, A., Soto, E., Silva, J., & Bay-Schmith, E. (1998a). Sensibility of meiofaunal copepod Tisbe longicornis to K2Cr2O7 under varying temperature regimes. Bulletin of Environmental Contamination and Toxicology, 61, 391–396. doi:10.1007/s001289900775.CrossRefGoogle Scholar
  28. Libes, S. (1992). An introduction to marine biogeochemistry (pp. 752). N.Y.: Wiley.Google Scholar
  29. López, D. A., Buschmann, A. H., & González, M. L. (1988). Efectos del uso de la zona costera por prácticas de acuicultura. Medio Ambiente, 9, 42–54.Google Scholar
  30. Manríquez, J. A. (2006). Estudio de la calidad de los sedimentos en cuerpos de agua de la X Región. In Informes preliminares Crucero CIMAR-Fiordos 11 (pp. 211–225). Chile: Comité Oceanográfico Nacional.Google Scholar
  31. Moreno-Garrido, I., Lubián, L. M., Jiménez, B., Soares, A., & Blasco, J. (2007). Estuarine sediment toxicity test on diatoms: Sensitivity comparison for three species. Estuarine, Coastal and Shelf Science, 71, 278–286. doi:10.1016/j.ecss.2006.08.003.CrossRefGoogle Scholar
  32. Moreno-Garrido, I., Robveille, N., Riba, I., & DelValls, T. A. (2006). Toxicity of sediment from a mining spill to Cylindrotheca closterium (Ehremberg) Lewin and Reiman (Bacillariophyceceae). Bulletin of Environmental Contamination and Toxicology, 76, 66–72. doi:10.1007/s00128-005-0890-x.CrossRefGoogle Scholar
  33. NODC (1994). World Ocean Atlas 1994. CD-ROM data sets. U.S. Department of Commerce. National Oceanic and Atmospheric Administration. Washington, D.C.: National Oceanographic Data Center, Ocean Climate Laboratory.Google Scholar
  34. Oslo and Paris Commission (OSPARCOM) (1998). OSPAR Guidelines for the management of dredged material (pp. 32).Google Scholar
  35. Palma, S., & Silva, N. (2004). Distribution of siphonophores, chaetognaths, euphausiids and oceanographic conditions in the fjords and channels of southern Chile. Deep-sea Research. Part II, Topical Studies in Oceanography, 51(6–9), 513–535. doi:10.1016/j.dsr2.2004.05.001.CrossRefGoogle Scholar
  36. Pickard, G. (1971). Some physical oceanographic features of inlets of Chile. Journal of the Fisheries Research Board of Canada, 28, 1077–1106.Google Scholar
  37. Rudolph, A., Aguirre, G., Moscoso, J., Silva, N., & Ahumada, R. (2007). Calidad ecotoxicológica de los sedimentos entre el Golfo de Reloncaví y el Golfo Corcovado (41.5–43° S). Investigaciones Marinas Valparaíso, 35(2), 53–61.Google Scholar
  38. Silva, N., & Calvete, C. (2002). Características oceanográficas físicas y químicas de canales australes chilenos entre el golfo de Penas y el estrecho de Magallanes (Crucero CIMAR 2 Fiordos). Ciencia y Tecnología del Mar, 25(1), 23–88.Google Scholar
  39. Silva, N., Calvete, C., & Sievers, H. (1997). Características oceanográficas físicas y químicas de canales australes chilenos entre Puerto Montt y laguna San Rafael. Ciencia y Tecnología del Mar, 20, 23–106.Google Scholar
  40. Silva, J., Larrain, A., Bay-Schmith, E., & Roa, R. (2004). Feeding-regime experiments to enhance gamete production in the carnivorous sea urchin Arbacia spatuligera. Aquaculture (Amsterdam, Netherlands), 231, 279–291. doi:10.1016/j.aquaculture.2003.09.053.CrossRefGoogle Scholar
  41. Silva, N., Maturana, J., Sepúlveda, J. I., & Ahumada, R. (1998). Materia orgánica, C y N, su distribución y estequiometría en sedimentos superficiales de la región norte de los fiordos y canales australes de Chile. Ciencia y Tecnología del Mar, 21, 49–74.Google Scholar
  42. Soto, E., Larrain, E., & Bay-Smith, E. (2000). Sensitivity of Ampelisca araucana juveniles (Crustacea: Amphipoda) to organic and inorganic toxicants in test of acute toxicity. Bulletin of Environmental Contamination and Toxicology, 64, 574–578. doi:10.1007/s001280000041.CrossRefGoogle Scholar
  43. StatSoft Inc. (2001). Statistica (data analysis software system) www.statsoft.com.
  44. U.S. Environmental Protection Agency (USEPA) (1988). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. Office of Research and Development, U.S. Environmental Protection Agency. Washington D.C. 206460. EPA/600/4-87-028.Google Scholar
  45. U.S. Environmental Protection Agency (USEPA) (1991). Isocrysis galbana Printz algal assay bottle test: Experimental design, application, and data interpretation protocol. Office of Research and Development. Environmental Research Laboratory-Corvallis, Oregon. EPA-600/9-78-018.Google Scholar
  46. Valdenegro, A., & Silva, N. (2003). Caracterización física y química de la zona de canales y fiordos australes de Chile entre el estrecho de Magallanes y cabo de Hornos (CIMAR 3 Fiordos). Ciencia y Tecnología del Mar, 26(2), 19–60.Google Scholar
  47. Valle-Levinson, A., Sarkar, N., Sanay, R., Soto, D., & León, J. (2007). Spatial structure of hydrography and flow in a Chilean fjord, estuario Reloncavi. Estuaries and Coasts, 30(1), 113–126.Google Scholar
  48. Williams, T. D. (1992). Survival and development of copepod larvae Tisbe battagliai in surface microlayer, water and sediment elutriates from the German Bight. Marine Ecology Progress Series, 91, 221–228. doi:10.3354/meps091221.CrossRefGoogle Scholar
  49. Zuñiga, M. (1999). Evaluación de la calidad acuática de bahía San Jorge a través de ensayos de toxicidad crónica con gametos del erizo de mar Arbacia spatuligera. Ciencia y Tecnología del Mar, 22, 59–74.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Anny Rudolph
    • 1
  • Paulina Medina
    • 1
  • Carolina Urrutia
    • 1
  • Ramón Ahumada
    • 1
  1. 1.Facultad de CienciasUniversidad Católica Santísima ConcepciónConcepciónChile

Personalised recommendations