Environmental Monitoring and Assessment

, Volume 155, Issue 1–4, pp 281–307 | Cite as

The occurrence of glyphosate, atrazine, and other pesticides in vernal pools and adjacent streams in Washington, DC, Maryland, Iowa, and Wyoming, 2005–2006

  • William A. Battaglin
  • Karen C. Rice
  • Michael J. Focazio
  • Sue Salmons
  • Robert X. Barry
Article

Abstract

Vernal pools are sensitive environments that provide critical habitat for many species, including amphibians. These small water bodies are not always protected by pesticide label requirements for no-spray buffer zones, and the occurrence of pesticides in them is poorly documented. In this study, we investigated the occurrence of glyphosate, its primary degradation product aminomethylphosphonic acid, and additional pesticides in vernal pools and adjacent flowing waters. Most sampling sites were chosen to be in areas where glyphosate was being used either in production agriculture or for nonindigenous plant control. The four site locations were in otherwise protected areas (e.g., in a National Park). When possible, water samples were collected both before and after glyphosate application in 2005 and 2006. Twenty-eight pesticides or pesticide degradation products were detected in the study, and as many as 11 were identified in individual samples. Atrazine was detected most frequently and concentrations exceeded the freshwater aquatic life standard of 1.8 micrograms per liter (μg/l) in samples from Rands Ditch and Browns Ditch in DeSoto National Wildlife Refuge. Glyphosate was measured at the highest concentration (328 μg/l) in a sample from Riley Spring Pond in Rock Creek National Park. This concentration exceeded the freshwater aquatic life standard for glyphosate of 65 μg/l. Aminomethylphosphonic acid, triclopyr, and nicosulfuron also were detected at concentrations greater than 3.0 μg/l.

Keywords

Atrazine Glyphosate Nonindigenous plants Pesticides Vernal pools 

References

  1. Aspelin, A. L. (2003). Pesticide usage in the United States: trends during the 20th century. CIPM Technical Bulletin 105 (not paginated).Google Scholar
  2. Augustin, B., & Seibel, H. (2002). Herbicide treatment of urban areas—a possible source of surface water contamination. Gesunde Pflanzen, 54(7), 235–240. doi:10.1046/j.1439-0345.2002.00235.x.CrossRefGoogle Scholar
  3. Battaglin, W. A., Kolpin, D. W., Scribner, E. A., Kuivila, K. M., & Sandstrom, M. W. (2005). Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002. Journal of the American Water Resources Association, 41(2), 323–332. doi:10.1111/j.1752-1688.2005.tb03738.x.CrossRefGoogle Scholar
  4. Battaglin, W. A., Thurman, E. M., Kalkhoff, S. J., & Porter, S. D. (2003). Herbicides and transformation products in surface waters of the Midwestern United States. Journal of the American Water Resources Association, 39(4), 743–756. doi:10.1111/j.1752-1688.2003.tb04402.x.CrossRefGoogle Scholar
  5. Barrett, K. A., & McBride, M. B. (2005). Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide. Environmental Science & Technology, 39, 9223–9228. doi:10.1021/es051342d.CrossRefGoogle Scholar
  6. Benachour, N., Sipahutar, H., Moslemi, S., Gasnier, C., Travert, C., & Seralini, G. (2007). Time- and dose-dependent effects of Roundup® on human embryonic and placental cells. Archives of Environmental Contamination and Toxicology, 53, 126–133. doi:10.1007/s00244-006-0154-8.CrossRefGoogle Scholar
  7. Birge, W. J., Westerman, J. A., & Spromberg, J. A. (2000). Comparative toxicology and risk assessment of amphibians. In D. Sparling, G. Linder, & C. Bishop (Eds.), Ecotoxicology of amphibians and reptiles (pp. 727–791). Pensacola, Florida: SETAC.Google Scholar
  8. Bringolf, R. B., Cope, W. G., Mosher, S., Barnhart, M. C., & Shea, D. (2007). Acute and chronic toxicity of glyphosate compounds to glochidia and juveniles of Lampsilis Siliquoidea (Unionidae). Environmental Toxicology and Chemistry, 26(10), 2094–2100. doi:10.1897/06-519R1.1.CrossRefGoogle Scholar
  9. Brodkin, M. A., Madhoun, H., Rameswaran, M., & Vatnick, I. (2007). Atrazine is an immune disruptor in adult northern leopard frogs (rana pipiens). Environmental Toxicology and Chemistry, 26(1), 80–84. doi:10.1897/05-469.1.CrossRefGoogle Scholar
  10. Buske, M. C. (1991). DeSoto National Wildlife Refuge demonstration and education project (88-4). Leopold Center for Sustainable Agriculture (pp. 54).Google Scholar
  11. Carlisle, S. M., & Trevors, J. T. (1988). Glyphosate in the environment. Water, Air, and Soil Pollution, 39, 409–420.Google Scholar
  12. Cauble, K., & Wagner, R. S. (2005). Sublethal effects of herbicide glyphosate on amphibian metamorphosis and development. Bulletin of Environmental Contamination and Toxicology, 75, 429–435. doi:10.1007/s00128-005-0771-3.CrossRefGoogle Scholar
  13. Chen, C. Y., Hathaway, K. M., & Folt, C. L. (2004). Multiple stress effects of Vision® herbicide, pH, and food on zooplankton and larval amphibian species from forest wetlands. Environmental Toxicology and Chemistry, 23(4), 823–831. doi:10.1897/03-108.CrossRefGoogle Scholar
  14. Childress, C. J. O., Foreman, W. T., Connor, B. F., & Maloney, T. J. (1999). New reporting procedures based on long-term method detection levels and some considerations for interpretations of water-quality data provided by the U.S. Geological Survey National Water Quality Laboratory. US Geological Survey Open-File Report, 99–193 (pp. 19).Google Scholar
  15. Christin, M. S., Menard, L., Gendron, A. D., Ruby, S., Cyr, D., Marcogliese, D. J., et al. (2004). Effects of agricultural pesticides on the immune system of Xenopus laevis and Rana pipiens. Aquatic Toxicology (Amsterdam, Netherlands), 67, 33–43. doi:10.1016/j.aquatox.2003.11.007.Google Scholar
  16. Coady, K. K., Murphy, M., Villeneuve, D., Hecker, M., Jones, P., Carr, J., et al. (2004). Effects of atrazine on metamorphosis, growth, and gonadal development in the green frog (Rana clamitans). Journal of Toxicology and Environmental Health, 67(12), 941–957. doi:10.1080/15287390490443722.CrossRefGoogle Scholar
  17. Colburn, E. A. (2004). Vernal pools—Natural history and conservation. Blacksburg, VA: The McDonald & Woodward Publishing Company.Google Scholar
  18. Donaldson, D., Kiely, T., & Grube, A. (2002). Pesticide industry sales and usage: 1998 and 1999 market estimates. US Environmental Protection Agency, Office of Pesticide Programs. EPA-733-R-02-001 (pp. 33).Google Scholar
  19. Du Preez, L. H., Jansen van Rensburg, P., Jooste, A., Carr, J., Giesy, J., Gross, T., et al. (2005). Seasonal exposure to triazine and other pesticides in surface waters in the western Highveld corn-production region in South Africa. Environmental Pollution, 135, 131–141. doi:10.1016/j.envpol.2004.09.019.CrossRefGoogle Scholar
  20. Edginton, A. N., Stephenson, G. R., Sheridan, P. M., Thompson, D. G., & Boermans, H. J. (2003). Effect of pH and Release® on two life stages of four anuran amphibians. Environmental Toxicology and Chemistry, 22(11), 2673–2678. doi:10.1897/02-484.CrossRefGoogle Scholar
  21. Edginton, A. N., Sheridan, P. M., Stephenson, G. R., Thompson, D. G., & Boermans, H. J. (2004). Comparative effects of pH and Vision® on two life stages of four anuran amphibian species. Environmental Toxicology and Chemistry, 23(4), 815–822. doi:10.1897/03-115.CrossRefGoogle Scholar
  22. Environment Canada (2002). Summary of existing Canadian environmental quality guidelines, 2002 update. Retrieved February 2006 from http://www.ccme.ca/assets/e1_06.pdf.
  23. Fairchild, J. F., Ruessler, D. S., & Carlson, R. (1998). Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. Environmental Toxicology and Chemistry, 17(9), 1830–1834. doi:10.1897/1551-5028(1998)017<1830:CSOFSO>2.3.CO;2.CrossRefGoogle Scholar
  24. Folmar, L. C., Sanders, H. O., & Julin, A. M. (1979). Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Archives of Environmental Contamination and Toxicology, 8, 269–278. doi:10.1007/BF01056243.CrossRefGoogle Scholar
  25. Frank, R., Braun, H. E., Ripley, B. D., & Clegg, B. S. (1990). Contamination of rural ponds with pesticides, 1971–85, Ontario, Canada. Bulletin of Environmental Contamination and Toxicology, 44(3), 401–409. doi:10.1007/BF01701222.CrossRefGoogle Scholar
  26. Furlong, E. T., Anderson, B. D., Werner, S. L., Soliven, P. P., Coffey, L. J. & Burkhardt, M. R. (2001). Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of pesticides in water by graphitized carbon-based solid-phase extraction and high-performance liquid chromatography/mass spectrometry. US Geological Survey Water-Resources Investigations Report, 01-4134 (pp. 73).Google Scholar
  27. Ganapathy, C. (1997). Environmental fate of triclopyr. Environmental Monitoring and Pest Management Branch, Department of Pesticide Regulation Sacramento: CA. (pp.18).Google Scholar
  28. Getsinger, K. D., Petty, D. G., Madsen, J. D., Skogerboe, J. G., Houtman, B. A., Haller, W. T., et al. (2000). Aquatic dissipation of the herbicide triclopyr in Lake Minnetonka, Minnesota. Pest Management Science, 56, 388–400. doi:10.1002/(SICI)1526-4998(200005)56:5<388::AID-PS150>3.0.CO;2-U.CrossRefGoogle Scholar
  29. Gianessi, L., & Reigner, N. (2006). Pesticide use in U.S. crop production: 2002—With comparison to 1992 & 1997 (Washington, DC: CropLife Foundation). Retrieved September 2007 from http://www.croplifefoundation.org/cpri_npud2002.htm.Google Scholar
  30. Gianessi, L., & Sankula, S. (2003). The value of herbicides in U.S. crop production (Washington, DC: National Center for Food & Agricultural Policy). Retrieved August 2006 from http://www.ncfap.org/benefits.htm.Google Scholar
  31. Giesy, J. P., Dobson, S., & Solomon, K. (2000). Ecotoxicological risk assessment for Roundup® herbicide. Reviews of Environmental Contamination and Toxicology, 167, 35–120.Google Scholar
  32. Gilbertson, M., Haffner, G. D., Drouillard, K. G., Albert, A., & Dixon, B. (2003). Immunosuppression in the northern leopard frog (Rana pipiens) induced by pesticide exposure. Environmental Toxicology and Chemistry, 22(1), 101–110. doi:10.1897/1551-5028(2003)022<0101:IITNLF>2.0.CO;2.CrossRefGoogle Scholar
  33. Goulet, B. N., & Hontela, A. (2003). Toxicity of cadmium, endosulfan, and atrazine in adrenal steroidogenic cells of two amphibian species, Xenopus laevis and Rana catesbeiana. Environmental Toxicology and Chemistry, 22(9), 2106–2113. doi:10.1897/02-255.CrossRefGoogle Scholar
  34. Hageman, K. J., Simonich, S. L., Campbell, D. H., Wilson, G. R., & Landers, D. H. (2006). Atmospheric deposition of current-use and historic-use pesticides in snow at national parks in the western United States. Environmental Science & Technology, 40(10), 3174–3180. doi:10.1021/es060157c.CrossRefGoogle Scholar
  35. Hayes, T. B. (2004). There is no denying this: Defusing the confusion about atrazine. Bioscience, 54(12), 1138–1149. doi:[1138:TINDTD]2.0.CO;2[1138:TINDTD]2.0.CO;2.CrossRefGoogle Scholar
  36. Hayes, T. B., Collins, A., Lee, M., Mendoza, M., Noriega, N., Struart, A., et al. (2002a). Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 5476–5480. doi:10.1073/pnas.082121499.CrossRefGoogle Scholar
  37. Hayes, T. B., Haston, K., Tsui, M., Hoang, A., Haeffele, C., & Vonk, A. (2002b). Herbicides: Feminization of male frogs in the wild. Nature, 419, 895–896. doi:10.1038/419895a.CrossRefGoogle Scholar
  38. Hayes, T. B., Haston, K., Tsui, M., Hoang, A., Haeffele, C., & Vonk, A. (2003). Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): Laboratory and field evidence. Environmental Health Perspectives, 111(4), 568–575.Google Scholar
  39. Hayes, T. B., Case, P., Chui, S., Chung, D., Haeffele, C., Haston, K., et al. (2006). Pesticide mixtures, endocrine disruption, and amphibian declines: Are we underestimating the impact?. Environmental Health Perspectives, 114(S–1), 40–50.CrossRefGoogle Scholar
  40. Howe, C. M., Berrill, M., Pauli, B. D., Helbing, C. C., Werry, K., & Veldhoen, N. (2004). Toxicity of glyphosate-based pesticides to four North American frog species. Environmental Toxicology and Chemistry, 23(8), 1928–1934. doi:10.1897/03-71.CrossRefGoogle Scholar
  41. Iowa State University, University Extension (2003). Pro tecting Iowa’s rare and endangered plants. PM1506 (pp. 4).Google Scholar
  42. Jooste, A. M., Du Preez, L., Carr, J., Giesy, J., Gross, T., Kendall, R., et al. (2005). Gonadal development of larval male Xenopus laevis exposed to atrazine in outdoor microcosms. Environmental Science & Technology, 39, 5255–5261. doi:10.1021/es048134q.CrossRefGoogle Scholar
  43. Kjaer, J., Olsen, P., Ullum, M., & Grant, R. (2005). Leaching of glyphosate and amino-methylphosphonic acid from Danish agricultural field sites. Journal of Environmental Quality, 34, 608–620.Google Scholar
  44. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000—a national reconnaissance. Environmental Science & Technology, 36, 1202–1211. doi:10.1021/es011055j.CrossRefGoogle Scholar
  45. Kolpin, D. W., Goolsby, D. A., & Thurman, E. M. (1995). Pesticides in near-surface aquifers: An assessment using highly sensitive analytical methods and tritium. Journal of Environmental Quality, 24, 1125–1132.CrossRefGoogle Scholar
  46. Kolpin, D. W., Thurman, E. M., Lee, E. A., Meyer, M. T., Furlong, E. T., & Glassmeyer, S. T. (2006). Urban contributions of glyphosate and its degradate AMPA to streams in the United States. The Science of the Total Environment, 354, 191–197. doi:10.1016/j.scitotenv.2005.01.028.CrossRefGoogle Scholar
  47. Kraus, F., & Campbell, E. W. (2002). Human-mediated escalation of a formerly eradicable problem: The invasion of Caribbean frogs in the Hawaiian Islands. Biological Invasions, 4, 327–332. doi:10.1023/A:1020909205908.CrossRefGoogle Scholar
  48. Lee, E. A., Strahan, A. P., & Thurman, E. M. (2002a). Methods of analysis by the U.S. Geological Survey Organic Geochemistry Research Group—determination of glyphosate, aminomethylphosphonic acid, and glufosinate in water using online solid-phase extraction and high performance liquid chromatography/mass spectrometry. U.S. Geological Survey Open-File Report 01-454 (p. 13).Google Scholar
  49. Lee, E. A., Strahan, A. P., & Thurman, E. M. (2002b). Methods of analysis by the U.S. Geological Survey Organic Geochemistry Research Group—determination of triazine and phenylurea herbicides and their degradation products in water using online solid-phase extraction and liquid chromatography/mass spectrometry. U.S. Geological Survey Open-File Report 02-436 (p. 19).Google Scholar
  50. Majewski, M. S., Foreman, W. T., Coupe, R. H., Goolsby, D. A., & Wiebe, F. W. (2008). Pesticides in air and rainwater in the midcontinental United States, 1995—Methods and data. US Geological Survey Open-File Report, 2007–1369 (pp. 24). Available at http://pubs.water.usgs.gov/ofr/2007/1369/.
  51. Maloney, T. J. (Ed.) (2005). Quality management system, U.S. Geological Survey National Water Quality Laboratory. US Geological Survey Open-File Report, 2005-1263, version 1.3, 9 November 2005. Retrieved March 2006 from http://nwql.usgs.gov.
  52. Mann, R. M., & Bidwell, J. R. (2001). The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs. Environmental Pollution, 114, 195–205. doi:10.1016/S0269-7491(00)00216-5.CrossRefGoogle Scholar
  53. Mann, R. M., Bidwell, J. R., & Tyler, M. J. (2003). Toxicity of herbicide formulations to frogs and the implications for product registration: A case study from Western Australia. Applied Herpetology, 1(1–2), 13–22. doi:10.1163/157075403766451199.CrossRefGoogle Scholar
  54. Mast, M. A., Campbell, D. H., Ingersoll, G. P., Foreman, W. T., & Krabbenhoft, D. P. (2003). Atmospheric deposition of nutrients, pesticides, and mercury in Rocky Mountain National Park, Colorado, 2002. US Geological Survey Water-Resources Investigations Report, 03-4241 (pp. 15).Google Scholar
  55. Meisterpro (2004). Crop protection handbook 2004. Willoughby, OH: Meister Media Worldwide.Google Scholar
  56. Monsanto (2005). Backgrounder—history of Monsanto’s glyphosate herbicides. Retrieved May 2008 from http://www.monsanto.com/monsanto/content/products/productivity/roundup/back_history.pdf.
  57. Newton, M., Horner, L. M., Cowell, J. E., White, D. E., & Cole, E. C. (1994). Dissipation of glyphosate and aminomethylphosphonic acid in North American forests. Journal of Agricultural and Food Chemistry, 42, 1795–1802. doi:10.1021/jf00044a043.CrossRefGoogle Scholar
  58. Osano, O., Admiraal, W., & Otieno, D. (2002). Developmental disorders in embryos of the frog Xenopus laevis induced by chloroacetanilide herbicides and their degradation products. Environmental Toxicology and Chemistry, 21(2), 375–379. doi: 10.1897/1551-5028(2002)021<0375:DDIEOT>2.0.CO;2.CrossRefGoogle Scholar
  59. Perkins, P. J., Boermans, H. J., & Stephenson, G. R. (2000). Toxicity of glyphosate and triclopyr using the frog embryo teratogenesis assay—Xenopus. Environmental Toxicology and Chemistry, 19(4), 940–945. doi:10.1897/1551-5028(2000)019<0940:TOGATU>2.3.CO;2CO;2.CrossRefGoogle Scholar
  60. Relyea, R. A. (2004). Growth and survival of five amphibian species exposed to combinations of pesticides. Environmental Toxicology and Chemistry, 23(4), 1737–1742. doi:10.1897/03-493.CrossRefGoogle Scholar
  61. Relyea, R. A. (2005a). The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications, 15(2), 618–627. doi:10.1890/03-5342.CrossRefGoogle Scholar
  62. Relyea, R. A. (2005b). The lethal impact of Roundup® on aquatic and terrestrial amphibians. Ecological Applications, 15(4), 1118–1124. doi:10.1890/04-1291.CrossRefGoogle Scholar
  63. Relyea, R. A. (2005c). The lethal impacts of Roundup® and predatory stress on six species of North American tadpoles. Archives of Environmental Contamination and Toxicology, 48, 351–357. doi:10.1007/s00244-004-0086-0.CrossRefGoogle Scholar
  64. Relyea, R. A. (2006). The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities: Response to letter to the Editor. Ecological Applications, 16(5), 2027–2034. doi: 10.1890/1051-0761(2006)016[2027:TIOIAH]2.0.CO;2.CrossRefGoogle Scholar
  65. Relyea, R. A., Schoeppner, N. M., & Hoverman, J. T. (2005). Pesticides and amphibians: The importance of community context. Ecological Applications, 15(4), 1125–1134. doi:10.1890/04-0559.CrossRefGoogle Scholar
  66. Rice, K. C., & Jung, R. E. (2004). Water-quality and amphibian population data for Maryland, Washington, D.C., and Virginia, 2001–2004. US Geological Survey Open-File Report, 2004-1401 (pp. 45). Retrieved February 2007 from http://pubs.usgs.gov/of/2004/1401/.
  67. Richard, S., Moslemi, S., Sipahutar, H., Benachour, N., & Seralini, G. (2005). Differential effects of glyphosate and Roundup® on human placental cells and aromatase. Environmental Health Perspectives, 113(6), 716–720.Google Scholar
  68. Scribner, E. A., Battaglin, W. A., Dietze, J. E., & Thurman, E. M. (2003). Reconnaissance data for glyphosate, other selected herbicides, their degradation products, and antibiotics in 51 streams in nine Midwestern States, 2002. US Geological Survey Open-File Report, 03-217 (pp. 101).Google Scholar
  69. Scribner, E. A., Thurman, E. M., Goolsby, D. A., Meyer, M. T., Battaglin, W. A., & Kolpin, D. W. (2005). Summary of significant results from studies of triazine herbicides and their degradation products in surface water, groundwater, and precipitation in the Midwestern United States during the 1990s. US Geological Survey Scientific Investigations Report, 2005-5094 (pp. 33).Google Scholar
  70. Scribner, E. A., Battaglin, W. A., Gilliom, R. J., & Meyer, M. T. (2007). Concentrations of glyphosate, its degradation product, aminomethylphosphonic acid, and glufosinate in ground- and surface-water, rainfall, and soil samples collected in the United States, 2001–2006. US Geological Survey Scientific Investigations Report, 2007-5122 (pp. 111).Google Scholar
  71. Shipitalo, M. J., Malone, R. W., & Owens, L. B. (2008). Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff. Journal of Environmental Quality, 37, 401–408. doi:10.2134/jeq2006.0540.CrossRefGoogle Scholar
  72. Skark, C., Zullei-Seibert, N., Schottler, U., & Schlett, C. (1998). The occurrence of glyphosate in surface water. International Journal of Environmental Analytical Chemistry, 70, 93–104. doi:10.1080/03067319808032607.CrossRefGoogle Scholar
  73. Smith, N. J., Martin, R. C., & St. Croix, R. G. (1996). Levels of the herbicide glyphosate in well water. Bulletin of Environmental Contamination and Toxicology, 57, 759–765. doi:10.1007/s001289900254.Google Scholar
  74. Solomon, K. R., Baker, D., Richards, R., Dixon, K., Klaine, S., LaPoint, T., et al. (1996). Ecological risk assessment of atrazine in North American surface waters. Environmental Toxicology and Chemistry, 15, 31–76. doi:10.1897/1551-5028(1996)015<0031:ERAOAI>2.3. CO;2.CrossRefGoogle Scholar
  75. Sullivan, K. B., & Spence, K. M. (2003). Effects of sublethal concentrations of atrazine and nitrate on metamorphosis of the African clawed frog. Environmental Toxicology and Chemistry, 22(3), 627–635. doi:10.1897/1551-5028(2003)022<0627:EOSCOA>2.0.CO;2.CrossRefGoogle Scholar
  76. Tatum, V. L. (2004). Toxicity, transport, and fate of forest herbicides. Wildlife Society Bulletin, 32(4), 1042– 1048. doi:10.2193/0091-7648(2004)032[1042:TTAFOF]2.0.CO;2.CrossRefGoogle Scholar
  77. Tavera-Mendoza, L., Ruby, S., Brousseau, P., Fournier, M., Cyr, D., & Marcogliese, D. (2002). Response of the amphibian tadpole Xenopus laevis to atrazine during sexual differentiation of the ovary. Environmental Toxicology and Chemistry, 21(6), 1264– 1267. doi:10.1897/1551-5028(2002)021<1264:ROTATX>2.0.CO;2.CrossRefGoogle Scholar
  78. Thompson, D. G., Wojtaszek, B. F., Staznik, B., Chartbrand, D. T., & Stephenson, G. R. (2004). Chemical and biomonitoring to assess potential acute effects of Vision® herbicide on native amphibian larvae in forest wetlands. Environmental Toxicology and Chemistry, 23(4), 843–849. doi:10.1897/02-280.CrossRefGoogle Scholar
  79. US Department of Agriculture (2006). Agricultural Chemical Use Database. National Agricultural Statistics Service (NASS). Retrieved November 2006 from http://www.pestmanagement.info/nass/.
  80. US Environmental Protection Agency (1993). R.E.D. facts—glyphosate. U.S. Environmental Protection Agency, Prevention, Pesticides, and Toxic Substances, EPA-738-F-93-001 (pp. 7).Google Scholar
  81. US Environmental Protection Agency (2006). Decision documents for Atrazine. U.S. Environmental Protection Agency Office of Prevention, Pesticides, and Toxic Substances. Retrieved May 2008 from http://www.epa.gov/oppsrrd1/REDs/atrazine_combined_docs.pdf.
  82. Vereecken, H. (2005). Mobility and leaching of glyphosate—A review. Pest Management Science, 61, 1139–1151. doi:10.1002/ps.1122.Google Scholar
  83. Whigham, D. F., & Jordan, T. E. (2003). Isolated wetlands and water quality. Wetlands, 23(3), 541–549. doi: 10.1672/0277-5212(2003)023[0541:IWAWQ]2.0.CO;2.CrossRefGoogle Scholar
  84. Wilde, F. D., Radtke, D. B., Gibs, J., & Iwatsubo, R. T. (Eds.) (1999). National field manual for the collection of water-quality data. U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, Chap. A. Retrieved February 2007 from http://water.usgs.gov/owq/FieldManual/.
  85. Wojtaszek, B. F., Staznik, B., Chartrand, D. T., Stephenson, G. R., & Thompson, D. G. (2004). Effects of Vision® herbicide on mortality, avoidance response, and growth of amphibian larvae in two forest wetlands. Environmental Toxicology and Chemistry, 23(4), 832–842. doi:10.1897/02-281.CrossRefGoogle Scholar
  86. Wood, T. M. (2001). Herbicide use in the management of roadside vegetation, Western Oregon, 1999–2000: Effects on the water quality of nearby streams. US Geological Survey Water-Resources Investigations Report, 01-4065 (pp. 27).Google Scholar
  87. Woodburn, A. T. (2000). Glyphosate: Production, pricing, and use worldwide. Pest Management Science, 56, 309–312. doi:10.1002/(SICI)1526-4998(200004)56:4<309::AID-PS143>3.0.CO;2-C.CrossRefGoogle Scholar
  88. Zedler, P. H. (2003). Vernal pools and the concept of “isolated wetlands”. Wetlands, 23(3), 597–607. doi:10.1672/0277-5212(2003)023[0597:VPATCO]2.0.CO;2.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • William A. Battaglin
    • 1
  • Karen C. Rice
    • 2
  • Michael J. Focazio
    • 3
  • Sue Salmons
    • 4
  • Robert X. Barry
    • 5
  1. 1.US Geological SurveyLakewoodUSA
  2. 2.US Geological SurveyCharlottesvilleUSA
  3. 3.US Geological SurveyRestonUSA
  4. 4.National Park ServiceWashingtonUSA
  5. 5.U.S Fish and Wildlife ServiceAlamoUSA

Personalised recommendations