The relative influence of geographic location and reach-scale habitat on benthic invertebrate assemblages in six ecoregions

  • Mark D. MunnEmail author
  • Ian R. Waite
  • David P. Larsen
  • Alan T. Herlihy
Open Access


The objective of this study was to determine the relative influence of reach-specific habitat variables and geographic location on benthic invertebrate assemblages within six ecoregions across the Western USA. This study included 417 sites from six ecoregions. A total of 301 taxa were collected with the highest richness associated with ecoregions dominated by streams with coarse substrate (19–29 taxa per site). Lowest richness (seven to eight taxa per site) was associated with ecoregions dominated by fine-grain substrate. Principle component analysis (PCA) on reach-scale habitat separated the six ecoregions into those in high-gradient mountainous areas (Coast Range, Cascades, and Southern Rockies) and those in lower-gradient ecoregions (Central Great Plains and Central California Valley). Nonmetric multidimensional scaling (NMS) models performed best in ecoregions dominated by coarse-grain substrate and high taxa richness, along with coarse-grain substrates sites combined from multiple ecoregions regardless of location. In contrast, ecoregions or site combinations dominated by fine-grain substrate had poor model performance (high stress). Four NMS models showed that geographic location (i.e. latitude and longitude) was important for: (1) all ecoregions combined, (2) all sites dominated by coarse-grain sub strate combined, (3) Cascades Ecoregion, and (4) Columbia Ecoregion. Local factors (i.e. substrate or water temperature) seem to be overriding factors controlling invertebrate composition across the West, regardless of geographic location.


Benthic invertebrates Ecoregions Habitat Geographic location 


  1. Biggs, G. J. F. (1995). The contribution of disturbance, catchment geology and landuse to the habitat template of periphyton in stream ecosystems. Freshwater Biology, 33, 419–438.CrossRefGoogle Scholar
  2. Black, R. W., Munn, M. D., & Plotnikoff, R. W. (2004). Using macroinvertebrates to identify land-cover optima at multiple scales in the Pacific Northwest, USA. Journal of the North American Benthological Society, 23, 340–362.CrossRefGoogle Scholar
  3. Carlise, D. M., & Clements, W. H. (2003). Growth and secondary production of aquatic insects along a gradient of Zn contamination in Rocky Mountain streams. Journal of the North American Benthological Society, 22, 582–597.CrossRefGoogle Scholar
  4. Clarke, K. L., & Gorley, R. N. (2006). PRIMER v6: user manual/tutorial. PRIMER-E Ltd. United Kingdom: Plymouth.Google Scholar
  5. Corkum, L. D. (1989). Patterns of benthic invertebrate assemblages in rivers of northwestern North America. Freshwater Biology, 21, 191–205.CrossRefGoogle Scholar
  6. Cuffney, T. F., Meador, M. R., Porter, S. D., & Gurtz, M. E. (2000). Responses of physical, chemical, and biological indicators of water quality to a gradient of agricultural land use in the Yakima River Basin, Washington. Environmental Monitoring and Assessment, 64, 259–270.CrossRefGoogle Scholar
  7. Culp, J. M., Walde, S. J., & Davis, R. W. (1983). Relative importance of substrate particle size and detritus to stream benthic macroinvertebrate microdistribution (Carnation Creek, British Columbia). Canadian Journal of Fisheries and Aquatic Sciences, 40, 1568–1574.Google Scholar
  8. Engle, V. D., & Summers, J. K. (1999). Latitudinal gradients in benthic community composition in Western Atlantic estuaries. Journal of Biogeography, 26, 1007–1023.CrossRefGoogle Scholar
  9. Friberg, N., Milner, A. M., Svendsen, L. M., Lindegaard, C., & Larsen, S. E. (2001). Macroinvertebrate stream communities along regional and physico-chemical gradients in Western Greenland. Freshwater Biology, 46, 1753–1764.CrossRefGoogle Scholar
  10. Griffith, M. B., Husby, P., Hall, R. K., Kaufmann, P. R., & Hill, B. H. (2003). Analysis of macroinvertebrate assemblages in relation to environmental gradients among lotic habitats of California’s Central Valley. Environmental Monitoring and Assessment, 82, 281–309.CrossRefGoogle Scholar
  11. Griffith, M. B., Kaufmann, P. R., Herlihy, A. T., & Hill, B. H. (2001). Analysis of macroinvertebrate assemblages in relation to environmental gradients in Rocky Mountain streams. Ecological Applications, 11, 489–505.CrossRefGoogle Scholar
  12. Hawkins, C. P., & Norris, R. H. (Eds.) (2000). Landscape classifications: Aquatic biota and bioassessments. Journal of the North American Benthological Society, 19 367–556.Google Scholar
  13. Hawkins, C. P., Norris, R. H., Gerritsen, J., Hughes, R. M., Jackson, S. K., Johnson, R. K., et al. (2000). Evaluation of the use of landscape classifications for the prediction of freshwater biota: Synthesis and recommendations. Journal of the North American Benthological Society, 19, 541–556.CrossRefGoogle Scholar
  14. Hering, D., Johnson, R. K., Kramm, S., Schmutz, S., Szoszkiewick, K., & Verdonschot, P. F. M. (2006). Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: A comparative metric-based analysis of organism response to stress. Freshwater Biology, 51, 1757–1785.CrossRefGoogle Scholar
  15. Herlihy, A. T., Larsen, D. P., Paulsen, S. G., Urquhart, N. S., & Rosenbaum, B. J. (2000). Designing a spatially balanced, randomized site selection process for regional stream surveys: The EMAP Mid-Atlantic pilot study. Environmental Monitoring and Assessment, 63, 95–113.CrossRefGoogle Scholar
  16. Karr, J. R., & Chu, E. W. (1997). Biological monitoring and assessment: Using multimetric indexes effectively. EPA/235-R97-001, U.S. University of Washington, Seattle: Environmental Protection Agency.Google Scholar
  17. Kaufmann, P. R., Levine, P., Robison, E. G., Seeliger, C. & Peck, D. V. (1999). Quantifying physical habitat in wadeable streams. EPA/620/R-99/003. Environmental Monitoring and Assessment Program, U.S. Environmental Protection Agency, Research Triangle Park, N.C. 61 p.Google Scholar
  18. Klemm, D. J., & Lazorchak, J. M. (Eds.) (1994). Environmental monitoring and assessment program—surface waters and Region 3 regional environmental monitoring and assessment program. 1994. Pilot field laboratory methods for streams. EPA/620/R-94/004. U.S. Washington DC: Environmental Protection Agency.Google Scholar
  19. Kristiansen, J. (1996). Dispersal of freshwater algae: A review. Hydrobiologia, 336, 151–157.Google Scholar
  20. Lancaster, J., & Hildrew, A. G. (1993). Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society, 12, 385–393.CrossRefGoogle Scholar
  21. Lancaster, J., Hildrew, A. G., & Townsend, C. R. (1990). Stream flow and predation effects on the spatial dynamics of benthic invertebrates. Hydrobiologia, 203, 177–190.CrossRefGoogle Scholar
  22. McCormick, F. H., Peck, D. V., & Larsen, D. P. (2000). Comparison of geographic classification schemes for Mid-Atlantic stream fish assemblages. Journal of the North American Benthological Society, 19, 385–404.CrossRefGoogle Scholar
  23. McCune, B., Grace, J. B., & Urban, D. L. (2002). Analysis of ecological communities. Gleneden Beach, Oregon, USA: MjM Software Design.Google Scholar
  24. McCune, B., & Mefford, M. J. (1999). PC-ORD. Multivariate analysis of ecological data. Version 4.0. Gleneden Beach, Oregon, USA: MjM Software Design.Google Scholar
  25. Meador, M. R., Hupp, C. R., Cuffney, T. F., & Gurtz, M. E. (1993). Methods for characterizing stream habitat as part of the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 93-408.Google Scholar
  26. Moulton, S. R. II, Carter, J. L., Grotheer, S. A., Cuffney, T. F., & Short, T. M. (2000). Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Processing, taxonomy, and quality control of benthic macroinvertebrate samples: U.S. Geological Survey Open-File Report 00-212, 49 p.Google Scholar
  27. Munn, M. D., Black, R. W., & Gruber, S. J. (2002). Response of benthic algae to environmental gradients in an agriculturally dominated landscape. Journal of North American Benthological Society, 21, 221–237.CrossRefGoogle Scholar
  28. Omernik, J. M. (1987). Map supplement: Ecoregions of the conterminous United States. Scale 1:750,000. Annals of the Association of American Geographers, 77, 118–125.CrossRefGoogle Scholar
  29. Pan, Y., Stevensen, R. J., Hill, B. H., & Herlihy, A. T. (2000). Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of North American Benthological Society, 19, 518–540.CrossRefGoogle Scholar
  30. Porter, S. D., Mueller, D. K., Spahr, N. E., Munn, M. D., & Dubrovsky, N. M. (2008). Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters. Freshwater Biology, 53, 1036–1054.CrossRefGoogle Scholar
  31. Potapova, M. G., & Charles, D. F. (2002). Benthic diatoms in USA rivers: Distributions along spatial and environmental gradient. Journal of Biogeography, 29, 167–187.CrossRefGoogle Scholar
  32. Rempel, L. L., Richardson, J. S., & Healey, M. C. (2000). Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwater Biology, 45, 57–73.CrossRefGoogle Scholar
  33. Resh, V. C., & McElravy, E. P. (1993). Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In D. M. Rosenberg, & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 159–194). New York: Chapman and Hall.Google Scholar
  34. Richards, C., Host, G. E., & Author, J. W. (1993). Identification of predominant environmental factors structuring stream macroinvertebrate communities within a large agricultural catchment. Freshwater Biology, 29, 285–294.CrossRefGoogle Scholar
  35. Rosenberg, D. M., & Resh, V. H. (Eds) (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman and Hall.Google Scholar
  36. Stevenson, R. J. (1997). Scale-dependent determinants and consequences of benthic algal heterogeneity. Journal of the North American Benthological Society, 16, 248–262.CrossRefGoogle Scholar
  37. Sweeney, B. W., & Vannote, R. L. (1984). Influence of food quality and temperature on life history characteristics of the parthenogenetic mayfly, Cloeon triangulifer. Freshwater Biology, 14, 621–630.CrossRefGoogle Scholar
  38. Tate, C. M., & Heiny, J. S. (1995). The ordination of benthic invertebrate communities in the South Platte River Basin in relation to environmental factors. Freshwater Biology, 33, 439–454.CrossRefGoogle Scholar
  39. Van Sickle, J., & Hughes, R. M. (2000). Classification strengths of ecoregions, catchments, and geographic clusters for aquatic vertebrates in Oregon. Journal of the North American Benthological Society, 19, 370–384.CrossRefGoogle Scholar
  40. Waite, I. R., Herlihy, A. T., Larsen, D. P., & Klemm, D. L. (2000). Comparing strengths of geographic and nongeographic classifications of stream benthic macroinvertebrates in the Mid-Atlantic Highlands, USA. Journal of the North American Benthological Society, 19, 429–441.CrossRefGoogle Scholar
  41. Waite, I. R., Herlihy, A. T., Larsen, D. P., Urquhart, N. S., & Klemm, D. J. (2004). The effects of macroinvertebrate taxonomic resolution in large landscape bioassessments: An example from the Mid-Atlantic Highlands, U.S.A. Freshwater Biology, 49, 474–489.CrossRefGoogle Scholar
  42. Woodcock, T. S., & Huryn, A. D. (2007). The response of macroinvertebrate production to a pollution gradient in a headwater stream. Freshwater Biology, 52, 177–196.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Mark D. Munn
    • 1
    Email author
  • Ian R. Waite
    • 2
  • David P. Larsen
    • 3
  • Alan T. Herlihy
    • 4
  1. 1.U.S. Geological SurveyTacomaUSA
  2. 2.U.S. Geological SurveyPortlandUSA
  3. 3.WED, NHEERL, U.S. Environmental Protection AgencyCorvallisUSA
  4. 4.Department of Fisheries and WildlifeOregon State UniversityCorvallisUSA

Personalised recommendations