The impact of the tunnel exhausts in terms of heavy metals to the surrounding ecosystem

Article

Abstract

Samples of soil, plants, and lichens were analysed for heavy metal content (Cd, Cr, Cu, Ni, Pb, and Zn) in relation to different distances from the tunnel ventilation systems in order to evaluate the environmental pollution caused by car exhausts pollution from the Tauerntunnel and the Katschbergtunnel (Austria). Results show that the extent of heavy metal pollution is related to the type of tunnel ventilation system. The vertical ventilation system which ends in an exhaust air tower in the alpine pasture of Mosermandl 1,900 m above sea level contaminates soils and plants up to a distance of 750 m from the exhaust source. The dispersion of metals in front of the horizontal ventilation systems, which are located next to the tunnel portals, exhibits a rapid decrease with distance. Lichen transplants placed in front of the horizontal ventilation systems show very high metal accumulation, which gradually declines with the distance from the emitter source, therefore the lichen species Pseudevernia furfuracea can be used as a very efficient biomonitor for monitoring heavy metal pollution caused by tunnel exhausts over time. Data from former years (1986, 1988, 1990 and 1992) and from this present research suggest that the contamination of heavy metals at Mosermandl has decreased slightly in soil samples, except for Cu, but increased in plant samples, whereas a significant increase of Pb was observed.

Keywords

Biomonitoring Heavy metals Lichen Plant Salzburg Soil Tunnel ventilation systems 

References

  1. Al-Chalabi, A. S., & Hawker, D. (2000). Distribution of vehicular lead in roadside soils of major roads of Brisbane, Australia. Water Air and Soil Pollution, 118, 299–310.CrossRefGoogle Scholar
  2. Al-Shayeb, S. M., & Seaward, M. R. D. (2001). Heavy metal content of roadside soils along ring road in Riyadh (Saudi Arabia). Asian Journal of Chemistry, 13, 407–423.Google Scholar
  3. Bergamaschi, L., Rizzio, E., Giaveri, G., Loppi, S., & Gallorini, M. (2007). Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Environmental Pollution, 10, 1–9.Google Scholar
  4. Biasioli, M., Barberis, R., & Ajmone-Marsan, F. (2006). The influence of a large city on some soil properties and metals content. Science of the Total Environment, 356, 154–164.CrossRefGoogle Scholar
  5. Blum, W. E. H., Danneberg, O., & Glatzel, G. (1986). Waldbodenuntersuchungen. Mitt Österr Bodenkundl Ges. Wien, pp. 31–59.Google Scholar
  6. Corsmeier, U., Kohler, M., Vogel, B., Vogel, H., & Fiedler, F. (2005). BAB II: a project to evaluate the accuracy of real-world traffic emissions for a motorway. Atmos Environ BAB-Sonderband, 39, 5627–5641.CrossRefGoogle Scholar
  7. De Fré, R., Bruynseraede, P., & Kretzschmar, J. G. (1994). Air pollution measurements in traffic tunnels. Environmental Health Perspectives, 192, 31–37.CrossRefGoogle Scholar
  8. Eikmann, T., & Kloke, A. (1992). Nutzungs-und schutzgutbezogene Orientierungswerte für (Schad-) Stoffe in Böden. In D. Rosenkranz, G. Bachmann, G. Einsele, & H. M. Harres (Eds.), (Hrsg.) (pp. 1–7): Bodenschutz 14 Lfg.Google Scholar
  9. Fakayode, S. O., & Olu-Owolabi, B. I. (2003). Heavy metal contamination of roadside topsoil in Osogbo, Nigeria: its relationship to traffic density and proximity to highways. Environment Geology, 44, 150–157.Google Scholar
  10. Frati, L., Brunialti, G., & Loppi, S. (2005). Problems related to lichen transplants to monitor trace element deposition in related surveys: A case study from central Italy. Journal of Atmospheric Chemistry, 52, 221–230.CrossRefGoogle Scholar
  11. Gautam, P., Blaha, U., & Appel, E. (2005). Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmospheric Environment, 39, 2201–2211.CrossRefGoogle Scholar
  12. Horak, O., Rebler, J., & Schmidt, J. (1976). Bleirückstände in Pflanzen und Böden entlang österreichischer Autostraßen. Die Bodenkultur, 26, 376–384.Google Scholar
  13. Jaradat, Q. M., & Momani, K. A. (1999). Contamination of roadside soil, plants and air with heavy metals in Jordan, a comparative study. Turkish J Chem, 23, 209–220.Google Scholar
  14. Juritsch, G., & Wiener, L. (1992). Salzburger Bodenzustandsinventur. Hrsg.: Amt der Salzburger Landesregierung Abt. 4, Salzburg, pp. 90–170.Google Scholar
  15. Kabata-Pendias, A., & Pendias, H. (1992). Trace Elements in Soils and Plants (pp. 32–43, 2nd ed.). Raton, FL, USA: CRC Press.Google Scholar
  16. Laschober, C., Limbeck, A., Rendl, J., & Puxbaum, H. (2004). Particulate emissions from on –road vehicles in the Kaisermühlen-tunnel (Vienna, Austria). Atmospheric Environment, 38, 2187–2195.CrossRefGoogle Scholar
  17. Loppi, S., Pacioni, G., Olivieri, N., & Di Giacimo, F. (1998). Accumulation of trace metals in the lichen Evernia prunastri transplanted at biomonitoring sites in central Izaly. Bryologist, 101, 451–454.Google Scholar
  18. Monna, F., Poujol, M., Losno, R., Dominik, J., Annegarn, H., & Coetzee, H. (2006). Origin of atmospheric lead in Johannesburg, South Africa. Atmospheric Environment, 40, 6554–6566.CrossRefGoogle Scholar
  19. Nabulo, G., Oryem-Origa, H., & Diamond, M. (2006). Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environmental Research, 101, 42–52.CrossRefGoogle Scholar
  20. Naszradi, T., Badacsonyi, A., Németh, N., Tuba, Z., & Bati, F. (2004). Zinc, lead and cadmium content in meadow plants and mosses along the M3 motorway (Hungary). Journal of Atmospheric Chemistry, 49, 593–603.CrossRefGoogle Scholar
  21. Onasanya, L. O., Ajewol, K., & Adeyeye, A. (1993). Lead content in roadside vegetation as indicators of atmospheric pollution. Environment International, 19, 615–618.CrossRefGoogle Scholar
  22. Onder, S., & Dursun, S. (2006). Air borne heavy metal pollution of Cedrus libani (A. Rich.) in the city centre of Konya (Turkey). Atmospheric Environment, 40, 1122–1133.CrossRefGoogle Scholar
  23. Pagotto, C., Remy, N., Legret, M., & Le Cloirec, P. (2001). Heavy metal pollution of road dust and roadside soil near a major rural highway. Environment and Technology, 22, 307–319.CrossRefGoogle Scholar
  24. Peer, T. (1991). Schwermetallanalysen von Böden und Pflanzen zur Beurteilung der Emissionsfelder im Bereich von Tunnelentlüftungsbauwerken. VDI Berichte, 901, 689–704.Google Scholar
  25. Peer, T., & Türk, R. (1991). Auswirkungen von Tunnelentlüftungssytemen auf den Schwermetallgehalt in Böden und Pflanzen am Beispiel der Tauernautobahn. Laufener Seminarbeiträge 3/91, Akad. Natursch. Landschaftspfl. (ANL). Laufen/Salzach, 91, 78–85.Google Scholar
  26. Ramakrishnaiah, H., & Somashekar, R. K. (2002). Heavy metal contamination in roadside soil and their mobility in relations to pH and organic carbon. Soil and Sediment Contamination, 11, 643–654.CrossRefGoogle Scholar
  27. Rossini Oliva, S., & Fernández Espinosa, A. J. (2007). Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchemical Journal, 86, 131–139.CrossRefGoogle Scholar
  28. Rusu, A. M., Jones, G. C., Chimonides, P. D. J., & Purvis, O. W. (2006). Biomonitoring using the lichen Hypogymnia physodes and bark samples near Zlatna, Romania immediately following closure of a copper ore-processing plant. Environmental Pollution, 143, 81–88.CrossRefGoogle Scholar
  29. Samecka-Cymerman, A., & Kempers, A. J. (1999). Bioindication of heavy metals in the town Wroclaw (Poland) with evergreen plants. Atmospheric Environment, 33, 419–430.CrossRefGoogle Scholar
  30. Tretiach, M., Adamo, P., Bargagli, R., Baruffo, R., Carletti, L., Crisafulli, P., et al. (2007). Lichen and moss bags as monitoring devices in urban areas. Part I: Influence of exposure on sample vitality. Environmental Pollution, 146, 380–391.CrossRefGoogle Scholar
  31. Unger, H. J., & Prinz, D. (1992). Verkehrsbedingte Immisionen in Baden-Württemberg. Schwermetalle und organische Fremdstoffe in straßennahen Böden und Aufwuchs. Ministerium für Umwelt Baden-Württemberg. Luft, Boden, Abfall 19, pp. 185.Google Scholar
  32. Viard, B., Pihan, F., Promeyrat, S., & Pihan, J. C. (2004). Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere, 55, 1349–1359.CrossRefGoogle Scholar
  33. Voutsa, D., Grimanis, A., & Samara, C. (1996). Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter. Environmental Pollution, 94, 325–335.CrossRefGoogle Scholar
  34. Yilmaz, S., & Zengin, M. (2004). Monitoring environmental pollution in Erzurum by chemical analysis of Scots pine (Pinus sylvstris L.) needles. Environment International, 29, 1041–1047.CrossRefGoogle Scholar
  35. Yun, S. T., Choi, B. Y., & Lee, P. K. (2000). Distribution of heavy metals (Cr, Cu, Zn, Pb, Cd, As) in roadside sediments, Seoul Metropolitan City, Korea. Environment and Technology, 21, 989–1000.CrossRefGoogle Scholar
  36. Zechmeister, H. G., Hohenwallner, D., Riss, A., & Hanus-Illnar, A. (2005). Estimation of element deposition derived from road traffic sources by using mosses. Environmental Pollution, 138, 238–249.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Molecular Biology, Division of ChemistryUniversity of SalzburgSalzburgAustria
  2. 2.Department of Organism BiologyUniversity of SalzburgSalzburgAustria

Personalised recommendations