Environmental Monitoring and Assessment

, Volume 149, Issue 1–4, pp 303–322 | Cite as

Quantifying the introgressive hybridisation propensity between transgenic oilseed rape and its wild/weedy relatives

Article

Abstract

In order to estimate the introgressive hybridisation propensity (IHP) between genetically modified (GM) oilseed rape (Brassica napus) and certain of its cross-compatible wild/weedy relatives at the landscape level, a conceptual approach was developed. A gene flow index was established enclosing the successive steps to successfully achieve introgressive hybridisation: wild/weedy relatives and oilseed rape should co-occur, have overlapping flowering periods, be compatible, produce viable and fertile progeny, and the transgenes should persist in natural/weedy populations. Each step was described and scored, resulting in an IHP value for each cross-compatible oilseed rape wild/weedy relative. The gene flow index revealed that Brassica rapa has the highest introgressive hybridisation propensity (IHP value = 11.5), followed by Hirschfeldia incana and Raphanus raphanistrum (IHP = 6.7), Brassica juncea (IHP = 5.1), Diplotaxis tenuifolia and Sinapis arvensis (IHP = 4.5) in Flanders. Based on the IHP values, monitoring priorities can be defined within the pool of cross-compatible wild/weedy oilseed rape relatives. Moreover, the developed approach enables to select areas where case-specific monitoring of GM oilseed rape could be done in order to detect potential adverse effects on cross-compatible wild/weedy relatives resulting from vertical gene flow. The implementation of the proposed oilseed rape–wild relative gene flow index revealed that the survey design of existing botanical survey networks does not suit general surveillance needs of GM crops in Belgium. The encountered hurdles to implement the gene flow index and proposals to acquire the missing data are discussed.

Keywords

Biosafety Genetic engineering Geographic information system Hybridisation Introgression Oilseed rape Post-market environmental monitoring Risk assessment Vertical gene flow Wild/weedy relatives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, L. S., Wikler, K., Wyndham, F. S., Linder, C. R., & Schmitt, J. (1993). Potential for persistence of genes escaped from canola: Germination cues in crops, wild, and crop–wild hybrid Brassica rapa. Functional Ecology, 7, 736–745.Google Scholar
  2. Al Mouemar, A., & Darmency, H. (2004). Lack of stable inheritance of introgressed transgene from oilseed rape in wild radish. Environmental Biosafety Research, 3, 209–214.Google Scholar
  3. Allainguillaume, J., Alexander, M., Bullock, J. M., Saunders, M., Allender, C. J., King, G., et al. (2006). Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats. Molecular Ecology, 15, 1175–1184.Google Scholar
  4. Ammann, K., Jacot, Y., & Al Mazyad, P. R. (2001). Safety of genetically engineered plants: An ecological risk assessment of vertical gene flow. In R. Custers (Ed.), Safety of genetically engineered crops (pp. 60–87). Ghent: Flanders Interuniversity Institute for Biotechnology.Google Scholar
  5. Ammitzbøll, H., Mikkelsen, T. N., & Jørgensen, R. B. (2005). Transgene expression and fitness of hybrids between oilseed rape and Brassica rapa. Environmental Biosafety Research, 4, 3–12.Google Scholar
  6. Beckie, H. J., Harker, K. N., Hall, S. I., Légère, A., Sikkema, P. H., Clayton, G. W., et al. (2006). A decade of herbicide-resistant crops in Canada. Canadian Journal of Plant Science, 86, 1243–1264.Google Scholar
  7. Beckie, H. J., Warwick, S. I., Nair, H., & Séguin-Swartz, G. (2003). Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecological Applications, 13, 1276–1294.Google Scholar
  8. Benabdelmouna, A., Guéritaine, G., Abirached-Darmency, M., & Darmency, H. (2003). Genome discrimination in progeny of interspecific hybrids between Brassica napus and Raphanus raphanistrum. Genome, 46, 469–472.Google Scholar
  9. Bilsborrow, P. E., Evans, E. J., Bowman, J., & Bland, B. F. (1998). Contamination of edible double-low oilseed rape crops via pollen transfer from high erucic cultivars. Journal of the Science of Food and Agriculture, 76, 17–22.Google Scholar
  10. Bing, D. J., Downey, R. K., & Rakow, G. F. W. (1995). An evaluation of the potential of intergeneric gene transfer between Brassica napus and Sinapis arvensis. Plant Breeding, 114, 481–484.Google Scholar
  11. Bing, D. J., Downey, R. K., & Rakow, G. F. W. (1996). Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breeding, 115, 470–473.Google Scholar
  12. Chadoeuf, R., Darmency, H., Maillet, J., & Renard, M. (1998). Survival of buried seeds of interspecific hybrids between oilseed rape, hoary mustard and wild radish. Field Crops Research, 58, 197–204.Google Scholar
  13. Chèvre, A. M., Ammitzbøll, H., Breckling, B., Dietz-Pfeilstetter, A., Eber, F., Fargue, A., et al. (2004). A review on interspecific gene flow from oilseed rape to wild relatives. In H. C. M. den Nijs, D. Bartsch & J. Sweet (Eds.), Introgression from genetically modified plants into wild relatives (pp. 235–251). Wallingford, UK: CABI.Google Scholar
  14. Chèvre, A. M., Eber, F., Baranger, A., Kerlan, M. C., Barret, P., Festoc, P., et al. (1996). Interspecific gene flow as a component of risk assessment for transgenic Brassicas. Acta Horticulturae, 407, 169–179.Google Scholar
  15. Chèvre, A. M., Eber, F., Baranger, A., Hureau, G., Barret, P., Picault, H., et al. (1998). Characterization of backcross generations obtained under field conditions from oilseed rape–wild radish F1 interspecific hybrids: An assessment of transgene dispersal. Theoretical and Applied Genetics, 97, 90–98.Google Scholar
  16. Chèvre, A. M., Eber, F., Baranger, A., & Renard, M. (1997). Gene flow from transgenic crops. Nature, 389, 924.Google Scholar
  17. Chèvre, A. M., Eber, F., Darmency, H., Fleury, A., Picault, H., Letanneur, J. C., et al. (2000). Assessment of interspecific hybridisation between transgenic oilseed rape and wild radish under normal agronomic conditions. Theoretical and Applied Genetics, 100, 1233–1239.Google Scholar
  18. Crawley, M. J., & Brown, S. L. (1995). Seed limitation and the dynamics of feral oilseed rape on the M25 motorway. Proceeding of the Royal Society of London Series B, Biological Sciences, 259, 49–54.Google Scholar
  19. Cresswell, J. E., Davies, T. W., Patrick, M. A., Russell, F., Pennel, C., Vicot, M., et al. (2004). Aerodynamics of wind pollination in a zoophilous flower, Brassica napus. Functional Ecology, 18, 861–866.Google Scholar
  20. Cresswell, J. E., & Osborne, J. L. (2004). The effect of patch size and separation on bumblebee foraging in oilseed rape: Implications for gene flow. Journal of Applied Ecology, 41, 539–546.Google Scholar
  21. Damgaard, C., & Kjellsson, G. (2005). Gene flow of oilseed rape (Brassica napus) according to isolation distance and buffer zone. Agriculture, Ecosystems and Environment, 108, 291–301.Google Scholar
  22. Daniels, R., Boffey, C., Mogg, R., Bond, J., & Clarke, R. (2005). The potential for dispersal of herbicide tolerance genes from genetically-modified, herbicide-tolerant oilseed rape crops to wild relatives. DEFRA report, EPG 1/5/151. Retrieved February 6, 2007, from http://www.defra.gov.uk/environment/gm/research/pdf/epg_1-5-151.pdf.
  23. Darmency, H., & Fleury, A. (2000). Mating system in Hirschfeldia incana and hybridisation to oilseed rape. Weed Research, 40, 231–238.Google Scholar
  24. Darmency, H., Lefol, E., & Fleury, A. (1998). Spontaneous hybridizations between oilseed rape and wild radish. Molecular Ecology, 7, 1467–1473.Google Scholar
  25. Davenport, I. J., Wilkinson, M. J., Mason, D. C., Charters, Y. M., Jones, A. E., Allainguillaume, J., et al. (2000). Quantifying gene movement from oilseed rape to its wild relatives using remote sensing. International Journal of Remote Sensing, 21, 3567–3573.Google Scholar
  26. de Vries, A. P., Meijden, V. D., & Brandenburg, W. A. (1992). Botanical files – A study of the real chances for spontaneous gene flow from cultivated plants to the wild flora of The Netherlands. Gorteria Supplement, 1, 1–100.Google Scholar
  27. Devaux, C., Klein, E. K., Lavigne, C., Sausse, C., & Messéan, A. (2008). Environmental and landscape effects on cross-pollination rates observed at the long distance among French oilseed rape (Brassica napus) commercial fields. Journal of Applied Ecology (in press), DOI 10.1111/j.1365-2664.2007.01400.x.
  28. Devaux, C., Lavigne, C., Austerlitz, F., & Klein, E. K. (2007). Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers. Molecular Ecology, 16, 487–499.Google Scholar
  29. Devaux, C., Lavigne, C., Falentin-Guyomarc’h, H., Vautrin, S., Lecomte, J., & Klein, E. K. (2005). High diversity of oilseed rape pollen clouds over an agro-ecosystem indicated long-distance dispersal. Molecular Ecology, 14, 2269–2280.Google Scholar
  30. Devos, Y., Reheul, D., De Schrijver, A., Cors, F., & Moens, W. (2004). Management of herbicide-tolerant oilseed rape in Europe: A case study on minimizing vertical gene flow. Environmental Biosafety Research, 3, 135–148.Google Scholar
  31. Devos, Y., Reheul, D., Thas, O., De Clercq, E. M., Cougnon, M., & Cordemans, K. (2007). Implementing isolation perimeters around genetically modified maize fields. Agronomy for Sustainable Development, 27, 155–165.Google Scholar
  32. Devos, Y., Thas, O., Cougnon, M., De Clercq, E. M., Cordemans, K., & Reheul, D. (2008). Feasibility of isolation perimeters for genetically modified maize. Agronomy for Sustainable Development (in press), DOI 10.1051/agro:2007039.
  33. Eastham, K., & Sweet, J. (2002). Genetically modified organisms (GMOs): The significance of gene flow through pollen transfer. Environmental Issue Report, no 28. European Environment Agency. Retrieved February 6, 2007, from http://reports.eea.eu.int/environmental_issue_report_2002_28/en/GMOs%20for%20www.pdf.
  34. Elliott, L. J., Mason, D. C., Wilkinson, M. J., Allainguillaume, J., Norris, C., Alexander, M., et al. (2004). The role of satellite image-processing for national-scale estimates of gene flow from genetically modified crops: Rapeseed in the UK as a model. Journal of Applied Ecology, 41, 1174–1184.Google Scholar
  35. Ellstrand, N. C. (2003). Dangerous liaisons? When cultivated plants mate with their wild relatives. In S. Scheiner (Ed.), Synthesis in ecology and evolution (p. 244). Baltimore, MD: The Johns Hopkins University Press.Google Scholar
  36. Ellstrand, N. C., Prentice, H. C., & Hancock, J. E. (1999). Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics, 30, 539–563.Google Scholar
  37. European Food Safety Authority (2006). Opinion of the scientific panel on genetically modified organisms on the post market environmental monitoring (PMEM) of genetically modified plants. EFSA Journal, 319, 1–27.Google Scholar
  38. FitzJohn, R. G., Armstrong, T. T., Newstrom-Lloyd, L. E., Wilton, A. D., & Cochrane, M. (2007). Hybridisation within Brassica and allied genera: Evaluation of potential for transgene escape. Euphytica, 158, 209–230.Google Scholar
  39. Flannery, M. -L., Meade, C., & Mullins, E. (2005). Employing a composite gene-flow index to numerically quantify a crop’s potential for gene flow: An Irish perspective. Environmental Biosafety Research, 4, 29–43.Google Scholar
  40. Ford, C. S., Allainguillaume, J., Grilli-Chantler, P., Cuccato, G., Allender, C. J., & Wilkinson, M. J. (2006). Spontaneous gene flow from rapeseed (Brassica napus) to wild Brassica oleracea. Proceedings of the Royal Society of London B: Biological Science, 273, 3111–3115.Google Scholar
  41. Frello, S., Hansen, K. R., Jensen, J., & Jørgensen, R. B. (1995). Inheritance of rapeseed (Brassica napus)-specific RAPD markers and a transgene in the cross B. juncea × (B. juncea × B. napus). Theoretical and Applied Genetics, 91, 236–241.Google Scholar
  42. Funk, T., Wenzel, G., & Schwarz, G. (2006). Outcrossing frequencies and distribution of transgenic oilseed rape (Brassica napus L.) in the nearest neighbourhood. European Journal of Agronomy, 24, 26–34.Google Scholar
  43. Garnier, A., Deville, A., & Lecomte, J. (2006). Stochastic modelling of feral plant populations with seed immigration and road verge management. Ecological Modelling, 197, 373–382.Google Scholar
  44. Graef, F., Züghart, W., Hommel, B., Heinrich, U., Stachow, U., & Werner, A. (2005). Methodological scheme for designing the monitoring of genetically modified crops at the regional scale. Environmental Monitoring and Assessment, 111, 1–26.Google Scholar
  45. Guéritaine, G., Bazot, S., & Darmency, H. (2003). Emergence and growth of hybrids between Brassica napus and Raphanus raphanistrum. New Phytologist, 158, 561–567.Google Scholar
  46. Guéritaine, G., & Darmency, H. (2001). Polymorphism for interspecific hybridisation within a population of wild radish (Raphanus raphanistrum) pollinated by oilseed rape (Brassica napus). Sexual Plant Reproduction, 14, 169–172.Google Scholar
  47. Guéritaine, G., Sester, M., Eber, F., Chèvre, A. M., & Darmency, H. (2002). Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum). Molecular Ecology, 11, 1419–1426.Google Scholar
  48. Hails, R. S., Bullock, J. M., Morley, K., Lamb, C., Bell, P., Horsnell, R., et al. (2006). Predicting fitness changes in transgenic plants: Testing a novel approach with pathogen resistant Brassicas. IOBC/WPRS Bulletin, 29, 63–70.Google Scholar
  49. Hails, R. S., & Morley, K. (2005). Genes invading new populations: A risk assessment perspective. Trends in Ecology and Evolution, 20, 245–262.Google Scholar
  50. Halfhill, M. D., Millwood, R. J., Raymer, P. L., & Stewart, C. N., Jr. (2002). Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa. Environmental Biosafety Research, 1, 19–28.Google Scholar
  51. Halfhill, M. D., Sutherland, J. P., Moon, H. S., Poppy, G. M., Warwick, S. I., Weissinger, A. K., et al. (2005). Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes. Molecular Ecology, 14, 3177–3189.Google Scholar
  52. Halfhill, M. D., Zhu, B., Warwick, S. I., Raymer, P. L., Millwood, R. J., Weissinger, A. K., et al. (2004). Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions. Environmental Biosafety Research, 3, 73–81.Google Scholar
  53. Hansen, L. B., Siegismund, H. R., & Jørgensen, R. B. (2001). Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Genetic Resources and Crop Evolution, 48, 621–627.Google Scholar
  54. Hansen, L. B., Siegismund, H. R., & Jørgensen, R. B. (2003). Progressive introgression between Brassica napus (oilseed rape) and B. rapa. Heredity, 91, 276–283.Google Scholar
  55. Hauser, T. P., Damgaard, C., & Jørgensen, R. B. (2003). Frequency-dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B. rapa (Brassicaceae). American Journal of Botany, 90, 571–578.Google Scholar
  56. Hauser, T. P., Jørgensen, R. B., & Østergård, H. (1997). Preferential exclusion of hybrids in mixed pollinations between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae). American Journal of Botany, 84, 756–762.Google Scholar
  57. Hauser, T. P., Jørgensen, R. B., & Østergård, H. (1998a). Fitness of backcross and F2 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity, 81, 436–443.Google Scholar
  58. Hauser, T. P., Shaw, R. G., & Østergård, H. (1998b). Fitness of F1 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity, 81, 429–435.Google Scholar
  59. Hayter, K. E., & Cresswell, J. E. (2006). The influence of pollinator abundance on the dynamics and efficiency of pollination in agricultural Brassica napus: Implications for landscape-scale gene dispersal. Journal of Applied Ecology, 43, 1196–1202.Google Scholar
  60. Hoyle, M., Hayter, K., & Cresswell, J. E. (2007). Effect of pollinator abundance on self-fertilization and gene flow: Application to GM canola. Ecological Applications, 17, 2123–2135.Google Scholar
  61. Hüsken, A., & Dietz-Pfeilstetter, A. (2007). Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.). Transgenic Research, 16, 557–569.Google Scholar
  62. Jenczewski, E., Ronfort, J., & Chèvre, A. M. (2003). Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environmental Biosafety Research, 2, 9–24.Google Scholar
  63. Johannessen, M. M., Andersen, B. A., Damgaard, C., & Jørgensen, R. B. (2005). Maternal inheritance of chloroplasts between Brassica rapa and F1-hybrids demonstrated by cpDNA markers specific to oilseed rape and B. rapa. Molecular Breeding, 16, 271–278.Google Scholar
  64. Jørgensen, R. B. (2007). Oilseed rape: Co-existence and gene flow from wild species. Advances in Botanical Research, 45, 451–464.Google Scholar
  65. Jørgensen, R., Ammitzbøll, H., Hansen, L., Johannessen, M., Andersen, B., & Hauser, T. (2004). Gene introgression and consequences in Brassica. In H. C. M. den Nijs, D. Bartsch, & J. Sweet (Eds.), Introgression from genetically modified plants into wild relatives (pp. 253–277). Wallingford, UK: CABI.Google Scholar
  66. Jørgensen, R. B., & Andersen, B. (1994). Spontaneous hybridization between oilseed rape (Brassica napus) and weedy Brassica campestris (Brassicaceae): A risk of growing genetically modified oilseed rape. American Journal of Botany, 81, 1620–1626.Google Scholar
  67. Jørgensen, R. B., Andersen, B., Hauser, T. P., Landbo, L., Mikkelsen, T. R., & Østergård, H. (1998). Introgression of crop genes from oilseed rape (Brassica napus) to related wild species – An avenue for the escape of engineered genes. Acta Horticulturae, 459, 211–217.Google Scholar
  68. Jørgensen, R. B., Andersen, B., Landbo, L., & Mikkelsen, T. (1996). Spontaneous hybridization between oilseed rape (Brassica napus) and weedy relatives. Acta Horticulturae, 407, 193–200.Google Scholar
  69. Kerlan, M. C., Chèvre, A. M., Eber, F., Baranger, A., & Renard, M. (1992). Risk assessment of outcrossing of transgenic rapeseed to related species: I. Interspecific hybrid production under optimal conditions with emphasis on pollination and fertilization. Euphytica, 62, 145–153.Google Scholar
  70. Klein, E. K., Lavigne, C., Picault, H., Renard, M., & Gouyon, P. H. (2006). Pollen dispersal of oilseed rape: Estimation of the dispersal function and effects of field dimension. Journal of Applied Ecology, 43, 141–151.Google Scholar
  71. Lambinon, J., Delvosalle, L., & Duvigneaud, J. (2004). Nouvelle flore de la Belgique, du Grand-Duché de Luxembourg, du Nord de la France et des Régions voisines (Pteridophytes et Spermatophytes). Meise: Jardin Botanique National de Belgique.Google Scholar
  72. Landbo, L., Andersen, B., & Jørgensen, R. B. (1996). Natural hybridization between oilseed rape and a wild relative: Hybrids among seeds from B. campestris. Hereditas, 125, 89–91.Google Scholar
  73. Landbo, L., & Jørgensen, R. B. (1997). Seed germination in weedy Brassica campestris and its hybrids with B. napus: Implications for risk assessment of transgenic oilseed rape. Euphytica, 97, 209–216.Google Scholar
  74. Lavigne, C., Klein, E. K., Vallée, P., Pierre, J., Godelle, B., & Renard, M. (1998). A pollen dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theoretical and Applied Genetics, 96, 886–896.Google Scholar
  75. Leflon, M., Eber, F., Letanneur, J. C., Chelysheva, L., Coriton, O., Huteau, V., et al. (2006). Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids. Theoretical and Applied Genetics, 113, 1467–1480.Google Scholar
  76. Lefol, E., Danielou, V., & Darmency, H. (1996a). Predicting hybridization between transgenic oilseed rape and wild mustard. Field Crops Research, 45, 153–161.Google Scholar
  77. Lefol, E., Danielou, V., Darmency, H., Boucher, F., Maillet, J., & Renard, M. (1995). Gene dispersal from transgenic crops. 1. Growth of interspecific hybrids between oilseed rape and the wild hoary mustard. Journal of Applied Ecology, 32, 803–808.Google Scholar
  78. Lefol, E., Fleury, A., & Darmency, H. (1996b). Gene dispersal from transgenic crops. 2. Hybridisation between oilseed rape and the hoary mustard. Sexual Plant Reproduction, 9, 189–196.CrossRefGoogle Scholar
  79. Lefol, E., Sèguin-Swartz, G., & Downey, R. K. (1997). Sexual hybridisation in crosses of cultivated Brassica species with the crucifers Erucastrum gallicum and Raphanus raphanistrum: Potential for gene introgression. Euphytica, 95, 127–139.Google Scholar
  80. Legg, C. J., & Nagy, L. (2006). Why most conservation monitoring is, but need not be, a waste of time. Journal of Environmental Management, 78, 194–199.Google Scholar
  81. Linder, C. R. (1998). Potential persistence of transgenes: Seed performance of transgenic canola and wild × canola hybrids. Ecological Applications, 8, 1180–1195.Google Scholar
  82. Linder, C. R., & Schmitt, J. (1995). Potential persistence of escaped transgenes: Performance of transgenic oil-modified Brassica seeds and seedlings. Ecological Applications, 5, 1056–1068.Google Scholar
  83. Mason, P., Braun, L., Warwick, S. I., Zhu, B., & Stewart, C. N., Jr. (2003). Transgenic Bt producing Brassica napus: Plutella xylostella selection pressure and fitness of weedy relatives. Environmental Biosafety Research, 2, 263–276.Google Scholar
  84. Mercer, K. L., & Wainwright, J. D. (2008). Gene flow from transgenic maize to landraces in Mexico: An analysis. Agriculture, Ecosystems & Environment, 123, 109–115.Google Scholar
  85. Mesquida, J., Renard, M., & Mesquida, B. (1987). Etude préliminaire sur la germination in vitro du pollen de colza (Brassica napus L. var. oleifera Metzg.) et sur l’évolution dans le temps de son aptitude à germer. Agronomie, 7, 409–416.Google Scholar
  86. Mikkelsen, T. R., Andersen, B., & Jørgensen, R. B. (1996a). The risk of crop transgene spread. Nature, 380, 31.Google Scholar
  87. Mikkelsen, T. R., Jensen, K., & Jørgensen, R. B. (1996b). Inheritance of oilseed rape (Brassica napus) RAPD markers in a backcross progeny with Brassica campestris. Theoretical and Applied Genetics, 92, 492–497.Google Scholar
  88. Moyes, C. L., Lilley, J. M., Casais, C. A., Cole, S. G., Haeger, P. D., & Dale, P. J. (2002). Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis. Molecular Ecology, 11, 103–112.Google Scholar
  89. Neemann, G., Karwasz, M., Weitemeier, M., & Enzian, S. (2006). Identification and geographical selection of general surveillance sites. Journal of Consumer Protection and Food Safety, 1, 98–101.Google Scholar
  90. Norris, C., & Sweet, J. (2002). Monitoring large scale releases of genetically modified crops (EPG 1/5/84) incorporating report on project EPG 1/5/30: Monitoring releases of genetically modified crop plants. DEFRA report, EPG 1/5/84. Retrieved February 6, 2007, from http://www.defra.gov.uk/environment/gm/research/pdf/epg_1-5-84_screen.pdf.
  91. Norris, C., Sweet, J., Parker, J., & Law, J. (2004). Implications for hybridization and introgression between oilseed rape (Brassica napus) and wild turnip (B. rapa) from an agricultural perspective. In H. C. M. den Nijs, D. Bartsch, & J. Sweet (Eds.), Introgression from genetically modified plants into wild relatives (pp. 107–123). Wallingford, UK: CABI.Google Scholar
  92. Pallett, D. W., Huang, L., Cooper, J. I., & Wang, H. (2006). Within-population variation in hybridisation and transgene transfer between wild Brassica rapa and Brassica napus in the UK. Annals of Applied Biology, 148, 147–155.Google Scholar
  93. Paul, E. M., Thompson, C., & Dunwell, J. M. (1995). Gene dispersal from genetically modified oil seed rape in the field. Euphytica, 81, 283–289.Google Scholar
  94. Pertl, M., Hauser, T. P., Damgaard, C., & Jørgensen, R. B. (2002). Male fitness of oilseed rape (Brassica napus), weedy B. rapa and their F1 hybrids when pollinating B. rapa seeds. Heredity, 89, 212–218.Google Scholar
  95. Pierre, J. (2001). The role of honeybees (Apis mellifera) and other insect pollinators in gene flow between oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum). Acta Horticulturae, 561, 47–51.Google Scholar
  96. Ramsay, G. (2005). Pollen dispersal vectored by wind or insects. In G. M. Poppy & M. J. Wilkinson (Eds.), Gene flow from GM plants (pp. 41–77). Oxford: Blackwell.Google Scholar
  97. Ramsay, G., Thompson, C., & Squire, G. R. (2003). Quantifying landscape-scale gene flow in oilseed rape. DEFRA report, EPG-RG0216. Retrieved February 6, 2006, from http://www.defra.gov.uk/environment/gm/research/pdf/epg_rg0216.pdf.
  98. Raybould, A. F., & Gray, A. J. (1993). Genetically modified crops and hybridization with wild relatives: A UK perspective. Journal of Applied Ecology, 30, 199–219.Google Scholar
  99. Rieger, M. A., Lamond, M., Preston, C., Powles, S. B., & Roush, R. T. (2002). Pollen-mediated movement of herbicide resistance between commercial canola fields. Science, 296, 2386–2388.Google Scholar
  100. Rieger, M. A., Potter, T. D., Preston, C., & Powles, S. B. (2001). Hybridisation between Brassica napus L. and Raphanus raphanistrum L. under agronomic field conditions. Theoretical and Applied Genetics, 103, 555–560.Google Scholar
  101. Rieger, M. A., Preston, C., & Powles, S. B. (1999). Risks of gene flow from transgenic herbicide-resistant canola (Brassica napus) to weedy relatives in southern Australian cropping systems. Australian Journal of Agricultural Research, 50, 115–128.Google Scholar
  102. Sanvido, O., Romeis, J., & Bigler, F. (2007). Ecological impacts of genetically modified crops: Ten years of field research and commercial cultivation. Advances in Biochemical Engineering/Biotechnology, 107, 235–278.Google Scholar
  103. Sanvido, O., Widmer, F., Winzeler, M., & Bigler, F. (2005). A conceptual framework for the design of environmental post-market monitoring of genetically modified plants. Environmental Biosafety Research, 4, 13–27.Google Scholar
  104. Scheffler, J. A., & Dale, P. J. (1994). Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species. Transgenic Research, 3, 263–278.Google Scholar
  105. Scheffler, J. A., Parkinson, R., & Dale, P. J. (1993). Frequency and distance of pollen dispersal from transgenic oilseed rape (Brassica napus). Transgenic Research, 2, 356–364.Google Scholar
  106. Scheffler, J. A., Parkinson, R., & Dale, P. J. (1995). Evaluating the effectiveness of isolation distances for field plots of oilseed rape (Brassica napus) using a herbicide-resistance transgene as a selectable marker. Plant Breeding, 114, 317–321.Google Scholar
  107. Schiemann, J., Wilhelm, R., Beißner, L., Schmidtke, J., & Schmidt, K. (2006). Data acquisition by farm questionnaires and linkage to other data sources. Journal of Consumer Protection and Food Safety, 1, 26–29.Google Scholar
  108. Scott, S. E., & Wilkinson, M. J. (1998). Transgene risk is low. Nature, 393, 320.Google Scholar
  109. Scott, S. E., & Wilkinson, M. J. (1999). Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa. Nature Biotechnology, 17, 390–392.Google Scholar
  110. Shaw, M. W., Harwood, T. D., Wilkinson, M. J., & Elliott, L. (2006). Assembling spatially explicit landscape models of pollen and spore dispersal by wind for risk assessment. Proceedings of the Royal Society of London B: Biological Science, 273, 1705–1713.Google Scholar
  111. Simard, M. J., & Légère, A. (2004). Synchrony of flowering between canola and wild radish (Raphanus raphanistrum). Weed Science, 52, 905–912.Google Scholar
  112. Simard, M. J., Légère, A., & Warwick, S. I. (2006). Transgenic Brassica napus fields and Brassica rapa weeds in Quebec: Sympatry and weed–crop in situ hybridization. Canadian Journal of Botany, 84, 1842–1851.Google Scholar
  113. Simpson, E., McRoberts, N., & Sweet, J. (2006). Out-crossing between field scale areas of genetically modified herbicide tolerant and other winter oilseed rape cultivars. Plant Genetic Resources Journal, 4, 96–107.Google Scholar
  114. Simpson, E. C., Norris, C. E., Law, J. R., Thomas, J. E., & Sweet, J. B. (1999). Gene flow in genetically modified herbicide tolerant oilseed rape (Brassica napus) in the UK. In P. J. W. Lutman (Ed.), Gene flow and agriculture: Relevance for transgenic crops (pp. 75–81). Hampshire, UK: British Crop Protection Council.Google Scholar
  115. Snow, A. A., Andersen, B., & Jørgensen, R. B. (1999). Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa. Molecular Ecology, 8, 605–615.Google Scholar
  116. Stewart, C. N., Jr., All, J. N., Raymer, P. L., & Ramachandran, S. (1997). Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Molecular Ecology, 6, 773–779.Google Scholar
  117. Thalmann, C., Guadagnuolo, R., & Felber, F. (2001). Search for spontaneous hybridization between oilseed rape (Brassica napus L.) and wild radish (Raphanus raphanistrum L.) in agricultural zones and evaluation of the genetic diversity of the wild species. Botanica Helvetica, 111, 107–119.Google Scholar
  118. Thompson, C. E., Squire, G., Mackay, G. R., Bradshaw, J. E., Crawford, J., & Ramsay, G. (1999). Regional patterns of gene flow and its consequences for GM oilseed rape. In P. J. W. Lutman (Ed.), Gene flow and agriculture: Relevance for transgenic crops (pp. 95–100). Hampshire, UK: British Crop Protection Council.Google Scholar
  119. Timmons, A. M., Charters, Y. M., Crawford, J. W., Burn, D., Scott, S. E., Dubbels, S. J., et al. (1996). Risks from transgenic crops. Nature, 380, 487.Google Scholar
  120. Timmons, A. M., O’Brien, E. T., Charters, Y. M., Dubbels, S. J., & Wilkinson, M. J. (1995). Assessing the risks of wind pollination from fields of genetically modified Brassica napus ssp. oleifera. Euphytica, 85, 417–423.Google Scholar
  121. Vacher, C., Weis, A. E., Hermann, D., Kossler, T., Young, C., & Hochberg, M. E. (2004). Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theoretical and Applied Genetics, 109, 806–814.Google Scholar
  122. Van Rompaey, E., & Delvosalle, L. (1979). Atlas de la Flore Belge et Luxembourgeoise. Pteridophytes et Spermatophytes. Meise: Jardin Botanique National de Belgique.Google Scholar
  123. Walklate, P. J., Hunt, J. C. R., Higson, H. L., & Sweet, J. B. (2004). A model of pollen-mediated gene flow for oilseed rape. Proceedings of the Royal Society of London B: Biological Science, 271, 441–449.Google Scholar
  124. Warwick, S. I., Légère, A., Simard, M.-J., & James, T. (2008). Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Molecular Ecology (in press), DOI 10.111/j.1365-294X.2007.03567.x.
  125. Warwick, S. I., Simard, M. J., Légère, A., Beckie, H. J., Braun, L., Zhu, B., et al. (2003). Hybridization between transgenic Brassica napus L. and its wild relatives: B. rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz. Theoretical and Applied Genetics, 107, 528–539.Google Scholar
  126. Weekes, R., Deppe, C., Allnutt, T., Boffey, C., Morgan, D., Morgan, S., et al. (2005). Crop-to-crop gene flow using farm scale sites of oilseed rape (Brassica napus) in the UK. Transgenic Research, 14, 749–759.Google Scholar
  127. Wilkinson, M. J., Davenport, I. J., Charters, Y. M., Jones, A. E., Allainguillaume, J., Butler, H. T., et al. (2000). A direct regional scale estimate of transgene movement from genetically modified oilseed rape to its wild progenitors. Molecular Ecology, 9, 983–991.Google Scholar
  128. Wilkinson, M. J., Elliott, L. J., Allianguillaume, J., Shaw, M. W., Norris, C., Welters, R., et al. (2003a). Hybridization between Brassica napus and B. rapa on a national scale in the United Kingdom. Science, 302, 457–459.Google Scholar
  129. Wilkinson, M. J., Sweet, J., & Poppy, G. M. (2003b). Risk assessment of GM plants: Avoiding gridlock. Trends in Plant Science?, 8, 208–212.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Plant Production, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  2. 2.Division of Biosafety and BiotechnologyScientific Institute of Public HealthBrusselsBelgium

Personalised recommendations