Environmental Monitoring and Assessment

, Volume 149, Issue 1–4, pp 241–249 | Cite as

Vehicular particulate matter emissions in road tunnels in Sao Paulo, Brazil

  • Odón R. Sánchez-Ccoyllo
  • Rita Y. Ynoue
  • Leila D. Martins
  • Rosana Astolfo
  • Regina M. Miranda
  • Edmilson D. Freitas
  • Alessandro S. Borges
  • Adalgiza Fornaro
  • Helber Freitas
  • Andréa Moreira
  • Maria F. Andrade
Article

Abstract

In the metropolitan area of São Paulo, Brazil, ozone and particulate matter (PM) are the air pollutants that pose the greatest threat to air quality, since the PM and the ozone precursors (nitrogen oxides and volatile organic compounds) are the main source of air pollution from vehicular emissions. Vehicular emissions can be measured inside road tunnels, and those measurements can provide information about emission factors of in-use vehicles. Emission factors are used to estimate vehicular emissions and are described as the amount of species emitted per vehicle distance driven or per volume of fuel consumed. This study presents emission factor data for fine particles, coarse particles, inhalable particulate matter and black carbon, as well as size distribution data for inhalable particulate matter, as measured in March and May of 2004, respectively, in the Jânio Quadros and Maria Maluf road tunnels, both located in São Paulo. The Jânio Quadros tunnel carries mainly light-duty vehicles, whereas the Maria Maluf tunnel carries light-duty and heavy-duty vehicles. In the Jânio Quadros tunnel, the estimated light-duty vehicle emission factors for the trace elements copper and bromine were 261 and 220 μg km−1, respectively, and 16, 197, 127 and 92 mg km−1, respectively, for black carbon, inhalable particulate matter, coarse particles and fine particles. The mean contribution of heavy-duty vehicles to the emissions of black carbon, inhalable particulate matter, coarse particles and fine particles was, respectively 29, 4, 6 and 6 times higher than that of light-duty vehicles. The inhalable particulate matter emission factor for heavy-duty vehicles was 1.2 times higher than that found during dynamometer testing. In general, the particle emissions in São Paulo tunnels are higher than those found in other cities of the world.

Keywords

Emission factors Road traffic Tunnel measurements Particulate matter Megacities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, C. D., Martins, M. H. R. B., Romano, J., & Godinho, R. (1997). São Paulo aerosol characterization study. Journal of Air & Waste Management Association, 47, 1297–1300.Google Scholar
  2. Andrade, F., Orsini, C., & Maenhaut, W. (1994). Relation between aerosol sources and meteorological parameters for inhalable atmospheric in São Paulo city, Brazil. Atmospheric Environment, 28(14), 2307–2315.CrossRefGoogle Scholar
  3. Artaxo, P., Campos, R. C., Fernandes, E. T., Martins, J. V., Xiao, Z., Lindqvist, O., et al. (2000). Large scale mercury and trace element measurements in the Amazon basin. Atmospheric Environment, 34, 4085–4096.CrossRefGoogle Scholar
  4. Artaxo, P., Castanho, A. D. A., Yamasoe, M. A., Marins, J. V., & Longo, K. M. (1999). Analysis of atmospheric aerosols by PIXE: The importance of real time and complementary measurements. Nuclear Instruments and Methods in Physics Research B, 150, 312–321.CrossRefGoogle Scholar
  5. Artaxo, P., & Hansson, H. C. (1995). Size distribution of biogenic aerosol particles from the Amazon Basin. Atmospheric Environment, 29, 393–402.CrossRefGoogle Scholar
  6. Artaxo, P., & Orsini, C. (1987). PIXE and receptor models applied to remote aerosol source apportionment in Brazil. Nuclear Instruments and Methods in Physics Research B, 22, 259–263.CrossRefGoogle Scholar
  7. Baldauf, T. W., Lane, D. D., Marotz, G. A., & Wiener, R. W. (2001). Performance evaluation of the portable MiniVOL particulate matter sampler. Atmospheric Environment, 35, 6087–6091.CrossRefGoogle Scholar
  8. Castanho, A. D. A., & Artaxo, P. (2001). Wintertime and summertime São Paulo aerosol source apportionment study. Atmospheric Environment, 35, 4889–4902.CrossRefGoogle Scholar
  9. CETESB (2005). Relatório Anual de Qualidade do Ar no Estado de São Paulo 2004. CETESB-Companhia de Tecnologia de Saneamento Ambiental, São Paulo, Brazil.Google Scholar
  10. Colberg, C. A., Tona, B., Catone, G., San Giorgio, C., Stahel, W. A., Sturm, P., et al. (2005b). Statistical analysis of the vehicle pollutant emissions derived from several European road tunnel studies. Atmospheric Environment, 39, 2499–2511.CrossRefGoogle Scholar
  11. Colberg, C. A., Tona, B., Stahel, W. A., Meier, M., & Staehelin, J. (2005a). Comparison of a road traffic emission model (HBEFA) with emissions derived from measurements in the Gubrist road tunnel, Switzerland. Atmospheric Environment, 39, 4703–4714.CrossRefGoogle Scholar
  12. Colón, M., Pleil, J. D., Hartlage, T. A., Guardani, M. L., & Martins, M. H. (2001). Survey of volatile organic compounds associated with automotive emissions in the urban airshed of São Paulo, Brazil. Atmospheric Environment, 35, 4017–4031.CrossRefGoogle Scholar
  13. Johansson, S. A. E., & Campbell, J. L. (1988). PIXE: A novel technique for elemental analysis (1st ed.). Chichester, Great Britain: Willy (Chapters 1–4 and 12.3).Google Scholar
  14. Hausberger, S., Rodler, J., Sturm, P., & Rexeis, M. (2003). Emission factors for heavy duty vehicles and validation by tunnel measurements. Atmospheric Environment, 37, 5237–5245.CrossRefGoogle Scholar
  15. Kawaashima, H., Minami, S., Hanai, Y., & Fushimi, A. (2006). Volatile organic compound emission factors from roadside measurements. Atmospheric Environment, 40, 2301–2312.CrossRefGoogle Scholar
  16. Kirchstetter, T. W., Harley, R. A., Kreisberg, N. M., Stolzenburg, M. R., & Hering, S. V. (1999). On-road measurement of fine particle and nitrogen oxide emissions from light- and heavy-duty motor vehicles. Atmospheric Environment, 33, 2955–2968.CrossRefGoogle Scholar
  17. Kristensson, A., Johansson, C., Westerholm, R., Swietlicki, E., Gidhagen, L., Wideqvist, U., et al. (2004). Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden. Atmospheric Environment, 38, 657–673.CrossRefGoogle Scholar
  18. Landulfo, E., Papayannis, A., Artaxo, P., Castanho, A. D. A., Freitas, A. Z., Sousa, R. F., et al. (2003). Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season. Atmospheric Chemistry and Physics, 3, 1523–1539.CrossRefGoogle Scholar
  19. Lim, M. C. H., Ayoko, G. A., Morawska, L., Ristovski, Z. D., Jayaratne, E. R., & Kokot, S. (2006). A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol. Atmospheric Environment, 40(17), 3111–3122.CrossRefGoogle Scholar
  20. Marr, L. C., Kirchstetter, T. W., Harley, R. A., Miguel, A. H., Hering, S. V., & Hammond, S. K. (1999). Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environmental Science & Technology, 33, 3091–3099.CrossRefGoogle Scholar
  21. Marple, V. A., Rubow, K. L., & Behm, S. (1991). A microorifice uniform deposit impactor (MOUDI): Description, calibration, and use. Aerosol Science and Technology, 14, 434–446.CrossRefGoogle Scholar
  22. Martins, L. D., Andrade, M. F., Freitas, E. D., Pretto, A., Gatti, L., Albuquerque, E. L., et al. (2006). Emission factors for gas-powered vehicles traveling through road tunnels in São Paulo City, Brazil. Environmental Science and Technology, 40, 6722–6729.CrossRefGoogle Scholar
  23. McGaughey, G. R., Desai, N. R., Allen, D. T., Seila, R. L., Lonneman, W. A., Fraser, M. P., et al. (2004). Analysis of motor vehicle emissions in as Houston tunnel during the Texas Air Quality Study 2000. Atmospheric Environment, 38, 3363–3372.CrossRefGoogle Scholar
  24. Miguel, A. H., Kirchstetter, T. W., Harley, R. A., & Hering, S. V. (1998). On-road emissions of the particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environmental Science & Technology, 32, 450–455.CrossRefGoogle Scholar
  25. Orsini, C. Q., Tabacniks, M. H., Artaxo, P., & Andrade, M. F. (1986). Characteristics of fine and coarse particles of natural and urban aerosols of Brazil. Atmospheric Environment, 20(12), 2259–2269.Google Scholar
  26. Parrish, D. D. (2006). Critical evaluation of US on-road vehicle emission inventories. Atmospheric Environment, 40, 2288–2300.CrossRefGoogle Scholar
  27. Sánchez-Ccoyllo, O. R., & Andrade, M. F. (2002). The influence of meteorological conditions on the behavior of pollutants concentrations in São Paulo. Environmental Pollution, 116, 257–263.CrossRefGoogle Scholar
  28. Schmitz, T., Hassel, D., & Weber, F. J. (2000). Determination of VOC-components in the exhaust of gasoline and diesel passenger cars. Atmospheric Environment, 34(27), 4639–4647.CrossRefGoogle Scholar
  29. Staehelin, J., Keller, C., Stael, W., Schlapefer, K., & Wunderli, S. (1998). Emission factors from road traffic from a tunnel study (Gubrist tunnel, Switzerland). Part III: Results of organic compound, SO2 and speciation of organic exhaust emission. Atmospheric Environment, 32(6), 999–1009.CrossRefGoogle Scholar
  30. Tabacniks, M., Orsini, C., & Artaxo, P. (1987). PIXE analysis for air pollution source apportionment in urban areas of Brazil. Nuclear Instruments and Methods in Physics Research B, 22, 315–318.CrossRefGoogle Scholar
  31. Vasconcellos, P. C., Zacarias, D., Pires, M. A. F., Pool, C. S., & Carvalho, L. R. F. (2003). Measurements of polycyclic aromatic hydrocarbons in airborne particles from the metropolitan area of Sao Paulo City, Brazil. Atmospheric Environment, 37, 3009–3018.CrossRefGoogle Scholar
  32. Yang, H. H., Hsieh, L. T., Liu, H. C., & Mi, H. H. (2005). Polycyclic aromatic hydrocarbon emissions from motorcycles. Atmospheric Environment, 31(1), 17–25.CrossRefGoogle Scholar
  33. Ynoue, R. Y., & Andrade, M. F. (2004). Size-resolved mass balance of aerosol particles over the Sao Paulo metropolitan area of Brazil. Aerosol Science and Technology, 38(S2), 52–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Odón R. Sánchez-Ccoyllo
    • 1
  • Rita Y. Ynoue
    • 2
  • Leila D. Martins
    • 1
  • Rosana Astolfo
    • 1
  • Regina M. Miranda
    • 1
  • Edmilson D. Freitas
    • 1
  • Alessandro S. Borges
    • 1
  • Adalgiza Fornaro
    • 1
  • Helber Freitas
    • 1
  • Andréa Moreira
    • 3
  • Maria F. Andrade
    • 1
  1. 1.Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric SciencesUniversity of São PauloSão PauloBrazil
  2. 2.School of Arts, Science and HumanitiesUniversity of São PauloSão PauloBrazil
  3. 3.Leopoldo A. Miguez de Mello Center for Research and DevelopmentEnvironmental Monitoring and EvaluationRio de JaneiroBrazil

Personalised recommendations