Environmental Monitoring and Assessment

, Volume 148, Issue 1–4, pp 353–357 | Cite as

Monitoring of monochlorophenols adsorbed on metal (Cu and Zn) supported pumice by Infrared Spectroscopy



The adsorption of monochlorophenols (o-, m-, p-chlorophenol) on pumice, Zn/pumice and Cu/pumice has been studied through Fourier Transform Infrared (FTIR) Spectroscopy in transmission mode. The data show that after Zn and Cu were supported on pumice, the adsorption of 4-chlorophenol is characterized by the bands at 1591, 1494, 1092 and 824 cm−1. Adsorption process occurred via metal cations on the surface of pumice. Metal oxides on pumice can mediate binding of p-chlorophenol.


Adsorption FTIR Metal-supported Monochlorophenols Pumice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alderman, S. L. (2005). Infrared and X-Ray spectroscopic studies of the copper (II) oxide mediated reactions of chlorinated aromatic precursors to PCDD/F. Dissertation, Louisiana State University, Baton Rouge, LA.Google Scholar
  2. Bandara, J., Mielczarski, J. A., & Kiwi, J. (2001). I. Adsorption mechanism of chlorophenols on iron oxides, titanium oxide and aluminum oxide as detected by infrared spectroscopy. Applied Catalysis. B, Enviromental, 34, 307–320.CrossRefGoogle Scholar
  3. Bardakçı, B., & Bahçeli, S. (2005). An IR study of benzoyl chloride adsorbed on KA, NaA and CaA zeolites. Zeitschrift für Naturforschung. A, A Journal of Physical Sciences, 60(8–9), 637–640.Google Scholar
  4. Catalfamo, P., Arrigo, I., Primerano, P., & Corigliano, F. (2006). Efficiency of a zeolitized pumice waste as a low-cost heavy metals adsorbent. Journal of Hazardous Materials, 134(1–3), 140–143.CrossRefGoogle Scholar
  5. Farkas, A., & Dékány, I. (2001). Interlamellar adsorption of organic pollutants in hydrophobic montmorillonite. Colloid & Polymer Science, 259, 459–467.CrossRefGoogle Scholar
  6. Fingler, S., Stipicevic, S., & Drevenkar, V. (2004). Sorption behaviour of chlorophenols and triazine herbicides in reference euro-soils. International Journal of Environmental Analytical Chemistry, 84, 83–93.Google Scholar
  7. Jitianu, M., Balasoiu, M., Marchidan, R., Zaharescu, M., Crisan, D., & Craiu, M. (2000). Thermal behaviour of hydrotalcite-like compounds: Study of the resulting oxidic forms. International Journal of Inorganic Materials, 2, 287–300.CrossRefGoogle Scholar
  8. Jung, M-W., Ahn, K-H., Lee, Y., Kim, K-P., Rhee, J-S., Park, J. T., & Paeng, K-J. (2001). Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC). Microchemical Journal, 70, 123–131.CrossRefGoogle Scholar
  9. Kung, K-H S., & McBride, M. B. (1991). Bonding of chlorophenols on iron and aluminum oxides. Environmental Science & Technology, 25, 702–709.CrossRefGoogle Scholar
  10. Madejova, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 1–10.CrossRefGoogle Scholar
  11. Namasivayam, C., & Kavitha, D. (2003). Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon. Journal of Hazardous Materials B, 98, 257–274.CrossRefGoogle Scholar
  12. Okolo, B., Park, C., & Keane, M. A. (2000). Interaction of phenol and chlorophenols with activated carbon and synthetic zeolites in aqueous media. Journal of Colloid and Interface Science, 226, 308–317.CrossRefGoogle Scholar
  13. Pakula, M., Swiatkowski, A., Walczyk, M., & Biniak, S. (2005). Voltammetric and FT-IR studies of modified activated carbon systems with phenol, 4-chlorophenol or 1,4-benzoquinone adsorbed from aqueous electrolyte solutions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 260, 145–155.CrossRefGoogle Scholar
  14. Pandit, B., & Chudasama, U. (2001). Synthesis, characterization and application of an inorgano organic material: p-chlorophenol anchored onto zirconium tungstate. Bulletin of Materials Science, 24(3), 265–271.CrossRefGoogle Scholar
  15. Sciré, S., Crisafulli, C., Maggiore, R., Minicò, S., & Galvagno, S. (1996). FT-IR characterization of alkali-doped Pd catalysts for the selective hydrogenation of phenol to cyclohexanone. Applied Surface Science, 93, 309–316.CrossRefGoogle Scholar
  16. Silverstein, R. M., Bassler, G. C., & Morrill, T. C. (1991). Spectrometric identification of organic compounds. New York: Wiley.Google Scholar
  17. Smith, B. (1999). Infrared spectral interpretation. A systematic approach. Boca Raton: CRC.Google Scholar
  18. Stafford, U., Gray, K. A., Kamat, P. V., & Varma, A. (1993). An in situ diffuse reflectance FTIR investigation of photocatalyticdegradation of 4-chlorophenol on a TiO2 powder surface. Chemical Physics Letters, 205, 55–61.CrossRefGoogle Scholar
  19. Weerasooriya, R., Makehelwala, M., Miedaner, M. M., & Tobschall, H. J. (2006). Thermodynamics of monochlorophenol isomers and pyrite interfacial interactions in the activation state. Journal of Colloid and Interface Science, 297, 31–37.CrossRefGoogle Scholar
  20. Yonge, D. R., Kelnath, T. M., Poznanska, K., & Jiang, Z. P. (1985). Single-solute irreversible adsorption on granular activated carbon. Environmental Science & Technology, 19, 690–694.CrossRefGoogle Scholar
  21. Zierkiewicz, W., Michalska, D., & Zeegers-Huyskens, T. (2000). Molecular structures and infrared spectra of p-chlorophenol and p-bromophenol theoretical and experimental studies. Journal of Physical Chemistry A, 104, 11685–11692.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Physics Department, Faculty of Arts and SciencesMehmet Akif Ersoy UniversityBurdurTurkey

Personalised recommendations