Environmental Monitoring and Assessment

, Volume 141, Issue 1–3, pp 177–188 | Cite as

Monitoring pollution in River Mureş, Romania, part II: Metal accumulation and histopathology in fish

  • Rita TriebskornEmail author
  • Ilie Telcean
  • Heidi Casper
  • Anna Farkas
  • Cristina Sandu
  • Gheorghe Stan
  • Ovidiu Colărescu
  • Tiberiu Dori
  • Heinz-R. Köhler


As a part of an exposure and effect monitoring conducted along the river Mureş, Western Romania in 2004, the health status of two indigenous fish species, sneep (Chondrostoma nasus) and European chub (Leuciscus cephalus) was investigated upstream and downstream the city of Arad. In fish, histopathology was assessed in liver and gills, and heavy metals (cadmium, copper, lead and zinc) were analyzed in liver samples. In both fish species, histopathological reactions in the gills (epithelial lifting, focal proliferation of epithelial cells of primary and secondary lamellae and resulting fusion of secondary lamellae, hyperplasia and hypertrophy of mucous cells, focal inflammation and necrosis of epithelial cells) were most severe at the two sampling sites upstream Arad city, which were shown to be polluted by copper, cadmium, faecal coliforms and streptococci in a parallel study. At these two sites, also histopathology in the liver of L. cephalus was more prominent than at the two downstream sites. In C. nasus, symptoms in the liver (focal inflammation with lymphocytic infiltrations, macrophage aggregates and single cell necrosis) were also highly pronounced at the sampling site located directly downstream the municipal sewage treatment plant of Arad. With the exception of copper accumulation in L. cephalus caught at the most upstream sampling site, in both fish species cadmium and copper accumulation were exceptionally high and did not differ significantly between the four sampling sites.


Biomarker Chub Sneep Fish Histopathology Metal accumulation Monitoring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, S. M. (2000). Assessing sources of stress to aquatic ecosystems using integrated biomarkers. Biological resource management connecting science and policy (pp. 17–29).Google Scholar
  2. Adams, S. M. (2002). Biological indicators of aquatic ecosystem stress: Introduction and overview. In Biological Indicators of Aquatic ecosystem stress. Am. Fish. Soc. (pp. 1–11). Bethesda, Maryland.Google Scholar
  3. Adams, S. M., Bevelhimer, M. S., Greeley, M. S., Levine, D. A., & Teh, S. J. (1999). Ecological risk assessment in a large river-reservoir: 6: Bioindicators of fish population health. Environmental Toxicology and Chemistry, 18, 628–640.CrossRefGoogle Scholar
  4. Bohl, E., Kleisinger, H., & Leuner, E. (2003). Rote Liste Gefährdeter Fische (Pisces) und Rundmäuler (Cyclostomata) Bayerns. Bayr. LFU, 166, 52–55.Google Scholar
  5. Burkhardt-Holm, P., & Bloesch, J. (2000). Fish as bioindicators for pollutants in the Danube River: An approach. Internat. Asoc. Danube Res., 33, 375–382.Google Scholar
  6. Burkhardt-Holm, P., Peter, A., & Segner, H. (2002). Decline of fish catch in Switzerland. Project Fishnet: A balance between analyses and synthesis. Aquatic Sciences, 64, 36–54.CrossRefGoogle Scholar
  7. Dietze, U., Braunbeck, T., Honnen, W., Köhler, H.-R., Schwaiger, J., Segner, H. et al. (2001). Chemometric discrimination between streams based on chemical, limnological and biological data taken from freshwater fishes and their interrelationships. Journal of Aquatic Food Product Technology, 8, 319–336.Google Scholar
  8. Freyhof, J. (1997). Remarks on the status of Chondrostoma nasus in the river Rhine. Folia Zoologica, 46, 61–66.Google Scholar
  9. Frodello, J. P., Raqbi, A., Mattei, X., Viale, D., & Marchard, B. (2001). Quantification of macrophage aggregates in the liver of Mugil cephalus. Journal of Submicroscopic Cytology and Pathology, 33, 473–476.Google Scholar
  10. Galloway, T. S., & Depledge, M. H. (2001). Immunotoxicity in invertebrates: measurement and ecotoxicological relevance. Ecotoxicology, 10, 5–23.CrossRefGoogle Scholar
  11. Ham, K. D., Adams, S. M., & Peterson, M. J. (1997). Application of multiple bioindicators to differentiate spatial and temporal variability from the effects of contaminant exposure on fish. Ecotoxicology and Environmental Safety, 37, 53–61.CrossRefGoogle Scholar
  12. Hamilton, S. J., & Mehrle, P. M. (1986). Metallothionein in fish: review of its importance in assessing stress from metal contaminants. Transactions of the American Fisheries Society, 115, 596–609.CrossRefGoogle Scholar
  13. Hamm, A. (ed.). (1991). Studie über die Wirkungen und Qualitätsziele von Nährstoffen in Fließgewässern, Academia-Verlag, St. Augustin, Germany.Google Scholar
  14. Holcik, J. (2003). Changes in the fish fauna and fisheries in the Slovak section of the Danube river: a review. Annales de Limnologie, 39, 177–195.Google Scholar
  15. Honnen, W., Rath, K., Schlegel, T., Schwinger, A., & Frahne, D. (2001). Chemical analyses of water, sediment and biota in two small streams in Southwest Germany. Journal of Aquatic Ecosystem Stress and Recovery, 8, 195–213.CrossRefGoogle Scholar
  16. IAD (2004). Water quality of the Danube and its tributaries 2002 (water quality map). IAD, Vienna, Austria.Google Scholar
  17. Köhler, H.-R., Sandu, C., Scheil, V., Nagy-Petricã, E. M., Segner, H., Telcean, I., et al. (2007). Monitoring pollution in River Mureş, Romania, part III: Biochemical effect markers in fish and integrative reflection. Environmental Monitoring and Assessment, 127, 47–54.CrossRefGoogle Scholar
  18. Lam, P. K. S., & Gray, J. (2003). The use of biomarkers in environmental monitoring programmes. Marine Pollution Bulletin, 46, 182–186.CrossRefGoogle Scholar
  19. Lam, P. K. S., & Wu, R. S. S. (2003). Use of biomarkers in environmental monitoring. Background paper for STAP workshop Analytical methods for POPs. Tsukuba, Japan, Dec. 2003.Google Scholar
  20. LAWA (1998). Beurteilung der Wasserbeschaffenheit von Fliessgewässern in der Bundesrepublik Deutschland - Chemische Gewässergüteklassifikation, Kulturbuchverlag, Berlin, Germany.Google Scholar
  21. Mallat, J. (1985). Fish gill structural changes induced by toxicants and other irritants: A statistical review. Canadian Journal of Fisheries and Aquatic Sciences, 42, 630–648.CrossRefGoogle Scholar
  22. Müller, G., & Prosi, F. (1978). Distribution of zinc, copper, and cadmium in various organs of roaches (Rutilus rutilus L.) from the Neckar and Elsenz Rivers. Zeitschrift fur Naturforschung. 33C, 7–14.Google Scholar
  23. Ognean, R.-C., Sandu, I., Kovács, P., & Buzás, Z. (1998). Mures/Maros. Report No. 1, Inception Report, Task Force on Monitoring and Assessment under the UN/ECE Water Convention, Pilot Project Programme Transboundary Rivers’, Targu Mures, Romania.Google Scholar
  24. Pawert, M., Müller, E., & Triebskorn, R. (1998). Ultrastructural changes in fish gills as biomarker to assess small stream pollution. Tissue and Cell, 30, 617–626.CrossRefGoogle Scholar
  25. Pedroli, J.-C., Zaugg, B., & Kirchhofer, A. (1991). Verbreitungsatlas der Fische und Rundmäuler der Schweiz, Doc. Faun. Helvetiae 11, Centre Suisse de Cartographie de la Faune, Neuchatel, Switzerland, 207 pp.Google Scholar
  26. Perkin-Elmer (1984). Analytical Techniques for Graphite Furnace Atomic Absorption Spectrometry. Publication: B332. Release: A3.0/January.Google Scholar
  27. Roméo, M., Siau, Y., Sidoumou, Z., & Gnassia-Barelli, M. (1999). Heavy metal distribution in different fish species from the Mauritania coast. Science of the Total Environment, 232, 169–175.CrossRefGoogle Scholar
  28. Schmitt, C. J., Bartish, T. M., Blazer, V. S., Gross, T. S., Tillitt, D. E., Bryant, W. L., et al. (1999). Biomonitoring of environmental status and trends (BEST) Program: Contaminants and their effects in fish from the Mississippi, Columbia, and Rio Grande basins. In D. W. Morganwalp, & H. T. Buxton (Eds.), U.S. Geological Survey Toxic Substances Hydrology Program – Proceedings of the technical meeting. Charleston, S.C., March 8–12, 1999, Volume 2 of 3 – Contamination of hydrologic systems and related ecosystems, U.S. Geological Survey-Water Resources Investigations Report 99-4018B.W. Trenton, NJ, USA, pp. 437–446.Google Scholar
  29. Schwaiger, J. (2001). Histopathological alterations and parasite infection in fish: indicators of multiple stress factors. Journal of Aquatic Ecosystem Stress and Recovery, 8, 231–240.CrossRefGoogle Scholar
  30. Schwaiger, J., Wanke, R., Adam, S., Pawert, M., Honnen, W., & Triebskorn, R. (1997). The use of histopathological indicators to evaluate contaminant-related stress in fish. Journal of Aquatic Ecosystem Stress and Recovery, 6, 75–86.CrossRefGoogle Scholar
  31. Schwaiger, J., Ferling, H., Mallow, U., Wintermayer, H., & Negele, R. D. (2004). Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology, 68, 141–150.CrossRefGoogle Scholar
  32. Sindilariu, P. D., Bacalbasa-Dobrovici, N., Freyhof, J., & Wolter, C. (2002). The juvenile fish community of the lower Danube and the Danube Delta. International Association for Danube Research 34, 517–526.Google Scholar
  33. Stephensen, F., Adolfsson-Erici, M., Celander, M., Hulander, M., Parkkonen, J., Hegelund, T., et al. (2003). Biomarker responses and chemical analyses in fish indicate leakage of polycyclic aromatic hydrocarbons and other compounds from car tire rubber. Environmental Toxicology and Chemistry, 22, 2926–2931.CrossRefGoogle Scholar
  34. Sures, B., & Knopf, K. (2004). Individual and combined effects of cadmium and 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on the humoral immune response in European eel (Anguilla anguilla) experimentally infected with larvae of Anguillicola crassus (Nematoda). Parasitology, 128, 445–454.CrossRefGoogle Scholar
  35. Teh, S. J., Adams, S. M., & Hinton, D. E. (1997). Histopathologic biomarkers in feral freshwater fish populations exposed to different types of contaminant stress. Aquatic Toxicology, 37, 51–70.CrossRefGoogle Scholar
  36. Teh, S. J., Deng, D., Werner, I., Teh, F., & Hung, S. S. O. (2005). Sublethal toxicity of orchard stormwater runoff in Sacramento splittail (Pogonichthys macrolepidotus) larvae. Marine Environmental Research, 59, 203–216.CrossRefGoogle Scholar
  37. Ternes, T. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245–3260.CrossRefGoogle Scholar
  38. Tillitt, D., & Papoulias, D. M. (2003). Closing the gap between exposure and effects in monitoring studies. Pure and Applied Chemistry, 75, 2467–2475.CrossRefGoogle Scholar
  39. Triebskorn, R. (2005). Physiological biomarkers and the trondheim biomonitoring system. In J. Lehr, & J. Keeley (Eds.), Water Encyclopedia: Water Quality and Resource Development, John Wiley and Sons, Inc., NJ, USA.Google Scholar
  40. Triebskorn, R., Adam, S., Behrens, A., Beier, S., Böhmer, J., Braunbeck, T., et al. (2003). Establishing causality between pollution and effects at different levels of biological organization: The VALIMAR project. Human and Ecological Risk Assessment, 9, 171–194.CrossRefGoogle Scholar
  41. Triebskorn, R., Adam, S., Casper, H., Honnen, W., Pawert, M., Schramm, M., et al. (2002). Biomarkers as diagnostic tools for evaluating toxicological effects of past water quality conditions on stream organisms. Ecotoxicology, 11, 451–465.CrossRefGoogle Scholar
  42. Triebskorn, R., Böhmer, J., Braunbeck, T., Honnen, W., Köhler, H.-R., Lehmann, R., et al. (2001). The project VALIMAR (VALIdation of bioMARkers for the assessment of small stream pollution): Objectives, experimental design, summary of results, and recommendations for the application of biomarkers in risk assessment. Journal of Aquatic Ecosystem Stress and Recovery, 8, 161–178.CrossRefGoogle Scholar
  43. Triebskorn, R., Casper, H., Heyd, A., Eikemper, R., Köhler, H.-R., & Schwaiger, J. (2004). Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part II: Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 68, 151–166.CrossRefGoogle Scholar
  44. Van Gestel, C. A. M., & van Brummelen, T. C. (1996). Incorporation of the biomarker concept in ecotoxicology calls for a redefinition of terms. Ecotoxicology, 5, 217–225.CrossRefGoogle Scholar
  45. Voigt, H.-R. (2004). Concentrations of mercury (Hg) and cadmium (Cd), and the condition of some coastal Baltic fishes. Environmentalica Fennica, 21, 1–22.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Rita Triebskorn
    • 1
    • 2
    Email author
  • Ilie Telcean
    • 3
  • Heidi Casper
    • 2
  • Anna Farkas
    • 4
  • Cristina Sandu
    • 5
  • Gheorghe Stan
    • 6
    • 7
  • Ovidiu Colărescu
    • 8
  • Tiberiu Dori
    • 8
  • Heinz-R. Köhler
    • 2
  1. 1.Steinbeis-Transfer Center for Ecotoxicology and EcophysiologyRottenburgGermany
  2. 2.Animal Physiological EcologyUniversity of TübingenTübingenGermany
  3. 3.Department of BiologyOradea UniversityOradeaRomania
  4. 4.Balaton Limnological Research InstituteHungarian Academy of SciencesTihanyHungary
  5. 5.Institute of BiologyRomanian AcademyBucharestRomania
  6. 6.Biological FacultyWestern University “Vasile Goldiş”AradRomania
  7. 7.Department of Life and Earth SciencesBabes-Bolyai UniversityCluj-NapocaRomania
  8. 8.Consultants to the Biological FacultyWestern University “Vasile Goldiş”AradRomania

Personalised recommendations