Environmental Monitoring and Assessment

, Volume 139, Issue 1–3, pp 35–40

Mapping giant salvinia with satellite imagery and image analysis

  • J. H. Everitt
  • R. S. Fletcher
  • H. S. Elder
  • C. Yang
Article

Abstract

QuickBird multispectral satellite imagery was evaluated for distinguishing giant salvinia (Salvinia molesta Mitchell) in a large reservoir in east Texas. The imagery had four bands (blue, green, red, and near-infrared) and contained 11-bit data. Color-infrared (green, red, and near-infrared bands), normal color (blue, green and red bands), and four-band composite (blue, green, red, and near-infrared bands) images were studied. Unsupervised image analysis was used to classify the imagery. Accuracy assessments performed on the classification maps of the three composite images had producer’s and user’s accuracies for giant salvinia ranging from 87.8 to 93.5%. Color-infrared, normal color, and four-band satellite imagery were excellent for distinguishing giant salvinia in a complex field habitat.

Keywords

QuickBird satellite imagery Color-infrared imagery Normal color imagery Four-band composite imagery Unsupervised image analysis Accuracy assessment Salvinia molesta 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett, S. C. H. (1989). Waterweed invasions. Scientific American, 261, 90–97.CrossRefGoogle Scholar
  2. Chilton, E. (1998). Salvinia molesta status report and action plan. Unpubl. Rept. Texas Parks and Wildlife Department, Austin, TX. 29 pp.Google Scholar
  3. Congalton, R. G. & Green, K. (1999). Assessing the accuracy of remotely sensed data: Principles and practices (pp.137). New York: Lewis Publishers.Google Scholar
  4. Cook, C. D. K. (1990). Origin, autoecology, and spread of some of the world’s most troublesome aquatic weeds. In A. H. Peiterse & K. J. Murphy (Eds.), Aquatic weeds (pp. 31–73). Cary, NC: Oxford University Press.Google Scholar
  5. Creigh, C. (1991). A marauding weed in check. Ecos, 70(Austral.), 26–29.Google Scholar
  6. Dechka, J. A., Franklin, S. E., Watmough, W. T., Bennet, R. P., & Inhstrup, D. W. (2002). Classification of wetland habitat and vegetation communities using multi-temporal IKONOS imagery in southern Saskatchewan. Canadian Journal of Remote Sensing, 28, 679–685.Google Scholar
  7. Erdas, Inc. (2002). Erdas-Imagine v8.6 tour guide. Atlanta, GA: Leica Geosystems LLC.Google Scholar
  8. Everitt, J. H., Pettit, R. D., & Alaniz, M. A. (1987). Remote sensing of broom snakeweed (Gutierrezia sarothrae) and spiny aster (Aster spinosa). Weed Science, 35, 295–302.Google Scholar
  9. Everitt, J. H., Yang, C., & Deloach, C. J. (2005). Remote sensing of giant reed with QuickBird satellite imagery. Journal of Aquatic Plant Management, 43, 81–85.Google Scholar
  10. Everitt, J. H., Yang, C., Fletcher, R. S., & Davis, M. R. (2004). Using aerial color-infrared photography and QuickBird satellite imagery for mapping wetland vegetation. Geocarto International, 19(4), 15–22.CrossRefGoogle Scholar
  11. Everitt, J. H., Yang, C., Helton, R. J., Hartmann, L. H., & Davis, M. R. (2002). Remote sensing of giant salvinia in Texas waterways. Journal of Aquatic Plant Management, 40, 11–16.Google Scholar
  12. Jakubauskas, M. E., Peterson, D. L., Campbell, S. W., Campbell, S. D., Penny, D., & deNoyelles, F. Jr. (2002). Remote sensing of aquatic plant obstructions in navigable waterways. In Proceedings of 2002 ASPRS-ACSM Annual Conference and FIG XXII Congress, April 22–25, 2002, Washington, DC. Bethesda, MD: ASPRS, CD-ROM.Google Scholar
  13. Mitchell, D. S. (1976). The growth and management of Eichhornia crassipes and Salvinia spp. in their native environment and in alien situations. In C. K. Varshney & J. Rzoska (Eds.), Aquatic weeds in Southeast Asia (pp. 167–175). The Hague, Netherlands: Dr. W. Junk Publisher.Google Scholar
  14. Mitchell, D. S., & Gopal, B. (1991). Invasion of tropical freshwaters by alien aquatic plants. In P. S. Ramakrishnan (Ed.), Ecology of biological invasion of the tropics (pp. 139–154).Google Scholar
  15. Oliver, J. D. (1993). A review of the biology of giant salvinia (Salvinia molesta Mitchell). Journal of Aquatic Plant Management, 31, 227–231.Google Scholar
  16. Owens, C. S., Smart, R. M., Honnell, D. R., & Dick, G. O. (2004). Effects of pH on growth of Salvinia molesta Mitchell. Journal of Aquatic Plant Management, 42, 34–38.Google Scholar
  17. Room, P. M., Harley, K. L. S., Forno, I. W., & Sands, D. P. (1981). Successful biological control of the floating weed Salvinia. Nature, 294, 78–80.CrossRefGoogle Scholar
  18. Thomlinson, J. R., Bolstad, P. V., & Cohen, W. B. (1999). Coordinating methodologies for scaling land-cover classifications from site-specific to global: steps toward validating global map products. Remote Sensing of Environment, 70, 16–28.CrossRefGoogle Scholar
  19. USGS (2004). Salvinia news and notes. Retrieved from www.salvinia.er.usgs.gov.
  20. Wang, L., Sousa, W. P., Gong, P., & Biging, G. S. (2004). Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment, 91, 432–440.CrossRefGoogle Scholar
  21. Weber, K. T., Glenn, N. F., Mundt, J. T., & Gokhale, B. (2006). A comparison between multi-spectral and hyperspectral platforms for early detection of leafy spurge in southeastern Idaho. In K. T. Weber (Ed.), Final report: Detection, prediction, impact, and management of invasive plants using GIS (pp. 186–196). Greenbelt, MD: NASA.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • J. H. Everitt
    • 1
  • R. S. Fletcher
    • 1
  • H. S. Elder
    • 2
  • C. Yang
    • 1
  1. 1.USDA-ARSWeslacoUSA
  2. 2.Texas Parks and Wildlife DepartmentJasperUSA

Personalised recommendations