Evaluating greywater reuse potential for sustainable water resources management in Oman

  • Ahmad Jamrah
  • Ahmed Al-Futaisi
  • Sanmugan Prathapar
  • Ali Al Harrasi


This study aims to evaluate the potential of greywater availability in Muscat Governorate in the Sultanate of Oman, to establish a methodology for greywater quantity estimation, to test greywater quality in order to assess reuse potential, and to examine public acceptance for reuse.Total fresh water consumption and greywater generation from different household sources were measured by water meters in five selected households during summer and winter. Additionally, a survey was designed and conducted in five administrative areas of Muscat Governorate, with the objective of testing a methodology for estimating greywater generation potential in these areas. Collected data were compared with that used by the Ministry of Housing, Electricity and Water, Sultanate of Oman. The survey covered a total of 169 houses and 1,365 people. Greywater samples were collected and analyzed from showers, laundries, kitchens and sinks in some of these households to determine their water quality parameters. Statistical analysis results indicated that there is no significant variance in the total fresh water consumption between data used by the ministry and those measured and estimated during this study, highlighting the applicability of the tested method. The study concluded that the average per capita greywater generation rate is 151 Lpcd. Greywater production ranged from 80 to 83% of the total fresh water consumption and most of the greywater is generated from showers. Further, 55 to 57% of the greywater generated in a typical Omani household originated from the shower, 28 to 33% originated from the kitchen, 6 to 9% originated from laundry, and 5 to 7% originated from sink, which constitutes approximately 81% of the total fresh water consumption. The physical, chemical, and biological analyses of the grab samples revealed that greywater contains significant levels of suspended solids, inorganic constituents, total organic carbon, chemical and biochemical oxygen demands, total Coliforms and Escherichia Coliform bacteria. The public acceptance survey illustrated that approximately 76% of the respondents accepted the reuse of greywater for gardening, 53% for car washing and 66% for toilet flushing.


Greywater Sink Shower Laundry Kitchen Reuse Public acceptance Oman 



five-day biochemical oxygen demand (mg/l).


chemical oxygen demand (mg/l).


dissolved oxygen (mg/l).


-log hydrogen-ion concentration.


total organic carbon (mg/l).


electrical conductivity (mS/m).


surfactants (mg/l).


total solids (mg/l).


total suspended solids (mg/l).


total dissolved solids (mg/l).


total fixed solids (mg/l).


total volatile solids (mg/l).


fixed suspended solids (mg/l).


volatile suspended solids (mg/l).


total coliforms


fecal coliforms


most probable number.


  1. Al-Jayyousi, O. (2003a). Greywater reuse: Towards sustainable water management. Desalination, 156, 181–192.CrossRefGoogle Scholar
  2. Al-Jayyousi, O. (2003b). Greywater reuse in urban agriculture for poverty alleviation: A case study in Jordan. Water International, 27(3), 180–199.Google Scholar
  3. American Public Health Association (APHA) (1999). Standard methods for the examination of water and wastewater (21st ed.). Washington D.C.Google Scholar
  4. Asano, T., Maeda, M., & Takaki, M. (1996). Wastewater reclamation and reuse in Japan: Overview and implementation examples. Water Science and Technology, 34(11), 219–226.CrossRefGoogle Scholar
  5. Badadoost, M. (1998). What is greywater: Quantity and quality? Canada. June 30, 2005, accessed through web site: http: //
  6. Dixon, A., Butler, D., & Fewkes, A. (1999a). Water saving potential of domestic water reuses systems using greywater and rainwater in combination. Water Science Technology, 39(5), 25–32.CrossRefGoogle Scholar
  7. Dixon, A., Butler, D., Fewkes, A., & Robinson, M. (1999b). Measurement and modeling of quality changes in stored untreated greywater. Urban Water, 1, 293–306.CrossRefGoogle Scholar
  8. Eriksson, E., Auffarth, K., Eilersen, A., Henze, M., & Ledin, A. (2003). Household chemicals and personal care products as sources for xenobiotic organic compounds in grey wastewater. Water S.A., 29(2), 135–146.Google Scholar
  9. Fittschen, I., & Niemezynowicz, J. (1997). Experiences with dry sanitation and greywater treatment in the Ecovillage Toarp, Sweden. Water Science Technology, 35(9), 161–170.CrossRefGoogle Scholar
  10. Hodges, D. (1998). Safe use of household greywater. Water & Environment Manager, 3(6), 15–17.Google Scholar
  11. Jamrah, A., Futaisi, A., Harrasi, A., Al-Qasem, L. (2004). Assessment of greywater characteristics and potential for reuse in agriculture. Dead Sea, Jordan: International Conference on Water Management.Google Scholar
  12. Jamrah, A., Al-Omari, A., Al-Qasem, L., & Abdel Ghani, N. (2006). Assessment of availability and characteristics of greywater in Amman. Water International, 31(2), 210–220.Google Scholar
  13. Jappesen, B. (1996). Domestic greywater re-use: Australia’s challenge for the future. Desalination, 106, 311–315.Google Scholar
  14. Jefferson, E., Burgess, A., Joanne, H., & Simon, J. (2001). Nutrient addition of enhance biological treatment of greywater. Water Resources, 35(11), 2702–2710.Google Scholar
  15. Kreysig, D. (1996). Greywater recycling treatment techniques and cost savings. World Water and Environmental Engineering, 19(3), 18–19.Google Scholar
  16. Lombardo, P. (1982). Expanding options for greywater treatment. Biocycle, 23(3), 45–49.Google Scholar
  17. Ministry of Housing and Electricity and Water (MHEW) (2005). Sultanate of Oman.Google Scholar
  18. Moosa, A. (2005). Muscat area. September 15, 2005, accessed through web site:
  19. Prathapar, S., Jamrah, A., Ahmed, M., Al Adawi, S., Al Sidairi, S., & Al Harassi, A. (2005). Overcoming constraints in treated greywater reuse in Oman. Desalination, 186, 177–186.CrossRefGoogle Scholar
  20. Rosner, B. (2005). Fundamentals of biostatistics. Boston, Massachusetts: PWS-Kent.Google Scholar
  21. Sheikh, B. (1993). The city of Los Angeles grey water pilot project shows safe use of grey water is possible. In Water management in the 90s: A time for innovation (p.681). New York, NY: American Society of Civil Engineers.Google Scholar
  22. Stephenson, T., & Judd, S. (1998). In-building wastewater treatment for water recycling. Final report, Cranfield University.Google Scholar
  23. Texas Water Commission (2003). Greywater. April 30, 2005, accessed through web site:
  24. Weizhen, L., Andrew, Y., & Leng, T. (2003). A preliminary study on potential of developing shower/Laundry wastewater reclamation and reuse system. Chemosphere, 52, 1451–1459.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Ahmad Jamrah
    • 1
  • Ahmed Al-Futaisi
    • 2
  • Sanmugan Prathapar
    • 3
  • Ali Al Harrasi
    • 2
  1. 1.Department of Civil EngineeringUniversity of JordanAmmanJordan
  2. 2.Department of Civil and Architectural EngineeringSultan Qaboos UniversityMuscatOman
  3. 3.Department of Soil, Water and Agricultural EngineeringSultan Qaboos UniversityMuscatOman

Personalised recommendations