Environmental Monitoring and Assessment

, Volume 138, Issue 1–3, pp 107–118

Atmospheric deposition of trace element pollutants in Macedonia studied by the moss biomonitoring technique

  • L. Barandovski
  • M. Cekova
  • M. V. Frontasyeva
  • S. S. Pavlov
  • T. Stafilov
  • E. Steinnes
  • V. Urumov
Article
  • 209 Downloads

Abstract

For the first time the atmospheric deposition of trace metals was studied over the entire territory of the Republic of Macedonia. Samples of the terrestrial mosses Hypnum cupressiforme, Camptothecium lutescens, and Homalothecium sericeum were collected in September–October 2002 at 73 sites evenly distributed over the country, and a total of 43 elements were determined by instrumental neutron activation analysis and atomic absorption spectrometry. Principal component factor analysis was used to identify the most polluted areas and characterize different pollution sources. The most important sources of trace metal deposition are ferrous and non-ferrous smelters, oil refineries, fertilizer production plants, and central heating stations. Four areas appear to be particularly exposed to metal pollution: Veles, Skopje, Tetovo, and Kavadarci-Negotino, whereas the predominantly agricultural regions in the south, southwest, and southeast show levels closer to European median values for most elements of mainly pollution origin.

Keywords

Atmospheric deposition Trace elements Metals Air pollution Factor analysis Macedonia Neutron activation analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, T., Røyset, O., & Steinnes, E. (1995). Atmospheric trace element deposition: Principal component analysis of ICP-MS data from moss samples. Environmental Pollution, 88, 67–77.CrossRefGoogle Scholar
  2. Bundaleska, J. M., Stafilov, T., & Arpadjan, S. (2005). Direct analysis of natural waters for arsenic species by hydride generation atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 40, 1–10.Google Scholar
  3. Buse, A., Norris, D., Harmens, H., Buker P., Ashenden, T., & Mills, G. (Eds.) (2003). European Atlas: Heavy metals in European mosses: 2000/2001 Survey, UNECE ICP Vegetation. Centre for Ecology & Hydrology, University of Wales Bangor, United Kingdom.Google Scholar
  4. Coşkun, M., Frontasyeva, M. V., Steinnes, E., Çotuk, A. Y., Pavlov, S. S., Coşkun, M., et al. (2005). Atmospheric deposition of heavy metals in Thrace Region studied by analysis of moss (Hypnum cupressiforme). Bulletin of Environmental Contamination and Toxicology, 74(1), 201–209.CrossRefGoogle Scholar
  5. Cucu-Man, S., Mocanu, R., Culicov, O., Steinnes, E., & Frontasyeva, M. V. (2004). Atmospheric deposition of metals in Romania studied by biomonitoring using the epiphytic moss Hypnum cupressiforme. International Journal of Environmental Analytical Chemistry, 84, 845–854.CrossRefGoogle Scholar
  6. Ermakova, E. V., Frontasyeva, M. V., Pavlov, S. S., Povtoreyko, E. A., Steinnes, E., & Cheremisina, Ye. N. (2004). Air pollution studies in Central Russia (Tver and Yaroslavl Regions) using the moss biomonitoring technique and neutron activation analysis. Journal of Atmospheric Chemistry, 49, 549–561.CrossRefGoogle Scholar
  7. Frontasyeva, M. V., Galinskaya, T. Ye., Krmar, M., Matavulj, M., Pavlov, S. S., Radnović, D., et al. (2004b). Atmospheric deposition of heavy metals in northern Serbia and Bosnia-Herzegovina studied by moss biomonitoring, neutron activation analysis and GIS technology. Journal of Radioanalytical and Nuclear Chemistry, 259, 141–147.CrossRefGoogle Scholar
  8. Frontasyeva, M. V., Grass, F., Nazarov, V. M., & Steinnes, E. (1995). Intercomparison of moss reference material by different multi-element techniques. Journal of Radioanalytical Nuclear Chemistry, 2, 371–379.CrossRefGoogle Scholar
  9. Frontasyeva, M. V., Smirnov, L. I., Steinnes, E., Lyapunov, S. M., & Cherchintsev, V. D. (2004a). Heavy metal atmospheric deposition study in the South Ural Mountains. Journal of Radioanalytical and Nuclear Chemistry, 259, 19–26.CrossRefGoogle Scholar
  10. Frontasyeva, M. V., & Steinnes, E. (2004). Marine gradients of halogens in moss studied by epithermal neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 261, 101–106.CrossRefGoogle Scholar
  11. Harmens, H., Buse, A., Büker, P., Norris, D., Mills, G., Williams, B., et al. (2004). Heavy metal concentrations in European mosses: 2000/2001 survey. Journal of Atmospheric Chemistry, 49, 425–436.CrossRefGoogle Scholar
  12. Janković, S. (1998). The Alšar Tl-As-Sb deposit and its specific metallogenic features. Nuclear Instruments Methods and Physics Research, A271, 286.Google Scholar
  13. Jordanovska, V., & Stafilov, T. (1996). Determination of lead and zinc in vegetables produced in the area near lead and zinc smelting plant in Titov Veles, Macedonia. In Third international symposium and exhibition on environmental contamination in Central and Eastern Europe, Warsaw, symposium proceedings (pp. 70–72).Google Scholar
  14. Kulevanova, S., Kadifkova-Panovska, T., Stafilov, T., & Lazaru, A. (1998). Heavy metals content in lime flowers from urban environment. Pharmacia (Sofia), 45, 13–16.Google Scholar
  15. Lazarov, P., & Serafimovski, T. (1997). Ore deposits and occurences of energy raw materials in Republic of Macedonia. Faculty of Mining and Geology, Štip (pp. 89–91) (in Macedonian).Google Scholar
  16. Macedonia’s First National Communication under the United Nations Framework Convention on Climate Change (2003). Ministry of Environment and Physical Planning, Skopje (p. 31).Google Scholar
  17. Ostrovnaya, T. M., Nefedyeva, L. S., Nazarov, V. M., Borzakov, S. B., & Strelkova, L. P. (1993). Software for NAA on the basis of relative and absolute methods using nuclear data base. In: Activation analysis in environment protection, D-14-93-325, Dubna (pp. 319–326).Google Scholar
  18. Rühling, Å., & Steinnes, E. (1998). Atmospheric heavy metal deposition in Europe 1995–1996. NORD Environment, NORD 1998:15.Google Scholar
  19. Rühling, Å., & Tyler, G. (1973). Heavy metal deposition in Scandinavia. Water, Air and Soil Pollution, 2, 445–455.CrossRefGoogle Scholar
  20. Schaug, J., Rambæk, J. P., Steinnes, E., & Henry, R. C. (1990). Multivariate analysis of trace element data from moss samples used to monitor atmospheric deposition. Atmospheric Environment, 24A, 2625–2631.Google Scholar
  21. Stafilov, T., Bojkovska, R., & Hirao, M. (2003). Air pollution monitoring system in the Republic of Macedonia. Journal of Environment and Protection Ecology, 4, 518–524.Google Scholar
  22. Stamenov, J., Iovchev, M., Vachev, B., Gueleva, E., Yurukova, L., Ganeva, A., et al. (2002). New results from air pollution studies in Bulgaria (Moss Survey 2000–2001), JINR Preprint, E14-2002-204, Dubna.Google Scholar
  23. Stan, O., Lucaciu, A., Frontasyeva, M. V., & Steinnes, E. (2001). New results from air pollution studies in Romania. In M. V. Frontasyeva, P. Vater, & V. P. Perelygin (Eds.), Proceedings of NATO ARW “Man-Made Radionuclides and Heavy Metals in Environmnent”. Kluwer Academic Publishers, NATO Science Series, 2001. IV Earth and Environmental Sciences, 5, 179–190.Google Scholar
  24. Steinnes, E. (1980). Atmospheric deposition of heavy metals in Norway studied by analysis of moss samples using neutron activation analysis and atomic absorption spectrometry. Journal of Radioanalytical Chemistry, 58, 387–391.CrossRefGoogle Scholar
  25. Steinnes, E. (1995). A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. The Science of the Total Environment, 160, 243–249.CrossRefGoogle Scholar
  26. Steinnes, E., & Frontasyeva, M. V. (1995). Epithermal neutron activation analysis of mosses used to monitor heavy metal deposition around an iron smelter complex. The Analyst, 120, 1437–1440.CrossRefGoogle Scholar
  27. Steinnes, E., Hanssen, J. E., Rambæk, J. P., & Vogt, N. B. (1994). Atmospheric deposition of trace elements in Norway: Temporal and spatial trend studied by moss analysis. Water, Air, and Soil Pollution, 74, 121–140.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • L. Barandovski
    • 1
  • M. Cekova
    • 1
  • M. V. Frontasyeva
    • 2
  • S. S. Pavlov
    • 2
  • T. Stafilov
    • 1
  • E. Steinnes
    • 3
  • V. Urumov
    • 1
  1. 1.Sts. Cyril and Methodius University, Faculty of SciencesSkopjeMacedonia
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia
  3. 3.Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations