Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia

  • T. J. Sullivan
  • B. J. Cosby
  • J. R. Webb
  • R. L. Dennis
  • A. J. Bulger
  • F. A. DevineyJr.


A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the park have acid neutralizing capacity (ANC) less than 20 μeq/L, levels at which chronic and/or episodic adverse impacts on native brook trout are possible. Model hindcasts suggested that none of these streams had ANC less than 50 μeq/L in 1900. Model projections, based on atmospheric emissions controls representative of laws already enacted as of 2003, suggested that the ANC of those streams simulated to have experienced the largest historical decreases in ANC will increase in the future. The levels of S deposition that were simulated to cause streamwater ANC to increase or decrease to three specified critical levels (0, 20, and 50 μeq/L) ranged from less than zero (ANC level not attainable) to several hundred kg/ha/year, depending on the selected site and its inherent acid-sensitivity, selected ANC endpoint criterion, and evaluation year for which the critical load was calculated. Several of the modeled streams situated on siliciclastic geology exhibited critical loads <0 kg/ha/year to achieve ANC >50 μeq/L in the year 2040, probably due at least in part to base cation losses from watershed soil. The median modeled siliciclastic stream had a calculated critical load to achieve ANC >50 μeq/L in 2100 that was about 3 kg/ha/year, or 77% lower than deposition in 1990, representing the time of model calibration.


Acidification Critical load Sulfur Stream chemistry Modeling 


  1. Aber, J. D., Melillo, J. M., Nadelhoffer, K. J., Pastor, J., & Boone, R. D. (1991). Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forest ecosystems. Ecological Applications, 1(3), 303–315.CrossRefGoogle Scholar
  2. Baker, J. P., & Christensen, S. W. (1991). Effects of acidification on biological communities. In D. F. Charles (Ed.), Acidic deposition and aquatic ecosystems (pp. 83–106). New York: Springer.Google Scholar
  3. Binkley, D., Driscoll, C., Allen, H. L., Schoeneberger, P., & McAvoy, D. (1989a). Acidic deposition and forest soils: Context and case studies in the southeastern U.S. Ecological studies no. 72, New York: Springer.Google Scholar
  4. Binkley, D., Valentine, D., Wells, C., & Valentine, U. (1989b). An empirical model of the factors contributing to 20-year decrease in soil pH in an old-field plantation of loblolly pine. Biogeochemistry, 8, 39–54.CrossRefGoogle Scholar
  5. Binkowski, F. S., & Shankar, U. (1995). The Regional Particulate Matter Model. 1. Model description and preliminary results. Journal of Geophysical Research, 100(26), 191–209.Google Scholar
  6. Bulger, A. J., Cosby, B. J., Dolloff, C. A., Eshleman, K. N., Webb, J. R., & Galloway, J. N. (1999). An integrated assessment of fish community responses to stream acidification. The Shenandoah National Park: Fish in Sensitive Habitats (SNP: FISH) Project final report, National Park Service.Google Scholar
  7. Bulger, A. J., Cosby B. J,. & Webb, J. R. (2000). Current, reconstructed past and projected future status of brook trout (Salvelinus fontinalis) streams in Virginia. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1515–1523.CrossRefGoogle Scholar
  8. Bull, K. R. (1992). An introduction to critical loads. Environmental Pollution, 77, 173–176.CrossRefGoogle Scholar
  9. Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., et al. (1987). A three-dimensional Eulerian acid deposition model: Physical concepts and formation. Journal of Geophysical Research, 92(14), 681–700.Google Scholar
  10. Cosby, B. J., Hornberger, G. M., Galloway, J. N., & Wright, R. F. (1985a). Time scales of catchment acidification: A quantitative model for estimating freshwater acidification. Environmental Science & Technology, 19, 1144–1149.CrossRefGoogle Scholar
  11. Cosby, B. J., Norton, S. A., & Kahl, J. S. (1996). Using a paired-catchment manipulation experiment to evaluate a catchment-scale biogeochemical model. Science of the Total Environment, 183, 49–66.CrossRefGoogle Scholar
  12. Cosby, B. J., Webb, J. R., Galloway, J. N., & Deviney, F. A. (2006). Acidic deposition impacts on natural resources in Shenandoah National Park. Technical report NPS/NER/NRTR-2006/066. (Philadelphia: U.S. Department of the Interior, National Park Service, Northeast Region).Google Scholar
  13. Cosby, B. J., Wright, R. F., & Gjessing, E. (1995). An acidification model (MAGIC) with organic acids evaluated using whole-catchment manipulations in Norway. Journal of Hydrology, 170, 101–122.CrossRefGoogle Scholar
  14. Cosby, B. J., Wright, R. F., Hornberger, G. M., & Galloway, J. N. (1985b). Modelling the effects of acid deposition: Assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resources Research, 21, 51–63.CrossRefGoogle Scholar
  15. Cosby, B. J., Wright, R. F., Hornberger, G. M., & Galloway, J. N. (1985c). Modelling the effects of acid deposition: Estimation of long-term water quality responses in a small forested catchment, Water Resources Research, 21, 1591–1601.CrossRefGoogle Scholar
  16. Cronan, C. S., & Schofield, C. L. (1990). Relationships between aqueous aluminum and acidic deposition in forested watersheds of North America and northern Europe. Environmental Science & Technology, 24, 1100–1105.CrossRefGoogle Scholar
  17. Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. C., Eager, C., et al. (2001). Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies. Bioscience, 51, 180–198.CrossRefGoogle Scholar
  18. Galloway, J. N., Deviney, Jr., F. A., & Webb, J. R. (1999). Shenandoah Watershed Study Data Assessment 1980–1993. Project final report, submitted to National Park Service, Luray, VA.Google Scholar
  19. Gathright, T. M. II. (1976). Geology of the Shenandoah National Park, Virginia. Bulletin 86, Charlottesville, VA: Virginia Division of Mineral Resources.Google Scholar
  20. Jenkins, A., Helliwell, R. C., Swingewood, P. J., Seftron, C., Renshaw, M., & Ferrier, R. C. (1998). Will reduced sulphur emissions under the Second Sulphur Protocol lead to recovery of acid sensitive sites in UK? Environmental Pollution, 99, 309–318.CrossRefGoogle Scholar
  21. Kämäri, J., Amann, M., Brodin, Y.-W, Chadwick, M. J., Henriksen, A., Hettelingh, J. P., et al. (1992). The use of critical loads for the assessment of future alternatives to acidification. Ambio, 21, 377–386.Google Scholar
  22. Mathur, R., & Dennis, R. L. (2003). Seasonal and annual modeling of reduced nitrogen compounds over the eastern United States: Emissions, ambient levels, and deposition amounts. Journal of Geophysical Research, 108(D15), 2201–2219. doi  10.1029/2002JD002794.CrossRefGoogle Scholar
  23. Nilsson, J., & Grennfelt, P. (Eds.) (1988). Critical loads for sulphur and nitrogen. Report 1988:15. Copenhagen: Nordic Council of Ministers.Google Scholar
  24. Pechan, E. H. & Associates, Inc. (2001). NO x and SO 2 Emissions Reduction Assessment Revised Report. Report prepared for the Clean Air Markets Division, U.S. Environmental Protection Agency. (Pechan report no. 01.06001/9008.413, Springfield, VA).Google Scholar
  25. Porter, E., Blett, T., Potter, D. U., & Huber, C. (2005). Protecting resources on federal lands: Implications of critical loads for atmospheric deposition of nitrogen and sulfur. BioScience, 55(7), 603–612.CrossRefGoogle Scholar
  26. Reuss, J. O., & Johnson, D. W. (1986). Acid deposition and the acidification of soil and water. New York: Springer.Google Scholar
  27. Shannon, J. D. (1998). Calculation of trends from 1900 through 1990 for sulfur and NOx-N deposition concentrations of sulfate and nitrate in precipitation, and atmospheric concentrations of SOx and NOx species over the Southern Appalachians. Report to the Southern Appalachian Mountains Initiative.Google Scholar
  28. Shenandoah National Park (1998). Backcountry & wilderness management plan. U.S. Dept. of Interior, National Park Service.Google Scholar
  29. Sullivan, T. J. (1993). Whole ecosystem nitrogen effects research in Europe. Environmental Science & Technology, 27(8), 1482–1486.CrossRefGoogle Scholar
  30. Sullivan, T. J. (2000). Aquatic effects of acidic deposition. Boca Raton, FL: Lewis.Google Scholar
  31. Sullivan, T. J., & Cosby, B. J. (1995). Testing, improvement, and confirmation of a watershed model of acid-base chemistry. Water, Air and Soil Pollution, 85, 2607–2612.CrossRefGoogle Scholar
  32. Sullivan, T. J., & Cosby, B. J. (2002) Critical loads of sulfur deposition to protect streams within Joyce Kilmer and Shining Rock wilderness areas from future acidification. Report prepared for USDA Forest Service, Asheville, NC. Corvallis, OR: E&S Environmental Chemistry, Inc.Google Scholar
  33. Sullivan, T. J., Cosby, B. J., Herlihy, A. T., Webb, J. R., Bulger, A. J., Snyder, K. U., et al. (2004). Regional model projections of future effects of sulfur and nitrogen deposition on streams in the Southern Appalachian Mountains. Water Resources Research 40(2), W02101 doi:  10.1029/2003WR001998.CrossRefGoogle Scholar
  34. Sullivan, T. J., Cosby, B. J., Lawrence, J. A., Dennis, R. L., Savig, K., Webb, J. R., et al. (2003). Assessment of air quality and related values in Shenandoah National Park. Technical report NPS/NERCHAL/NRTR-03/090. (Philadelphia: U.S. Department of the Interior, National Park Service, Northeast Region).Google Scholar
  35. Sullivan, T. J., Cosby, B. J., Tonnessen, K. A., & Clow, D. W. (2005). Surface water acidification responses and critical loads of sulfur and nitrogen deposition in Loch Vale Watershed, Colorado. Water Resources Research, 41, W01021, doi:  10.1029/2004WR003414.CrossRefGoogle Scholar
  36. Sullivan, T. J., Cosby, B. J., Webb, J. R., Snyder, K. U., Herlihy, A. T., Bulger, A. J., et al. (2002). Assessment of the effects of acidic deposition on aquatic resources in the Southern Appalachian Mountains. (Report prepared for the Southern Appalachian Mountains Initiative (SAMI). Corvallis, OR: E&S Environmental Chemistry, Inc.; Available at
  37. Sullivan, T. J., Turner, R. S., Charles, D. F., Cumming, B. F., Smol, J. P., Schofield, C. L., et al. (1992). Use of historical assessment for evaluation of process-based model projections of future environmental change: Lake acidification in the Adirondack Mountains, New York, U.S.A. Environmental Pollution, 77, 253–262.CrossRefGoogle Scholar
  38. U.S. Environmental Protection Agency (2000). Procedures for developing base year and future year mass and modeling inventories for the heavy-duty engine and vehicle standards and highway diesel fuel (HDD) rulemaking. EPA report no. EPA420-R-00-020. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards.Google Scholar
  39. U.S. Environmental Protection Agency (2002). Documentation of EPA Modeling Applications (V.2.1) using the integrated planning model. EPA report no. EPA430/R-02-004. Washington, D.C.: U.S. Environmental Protection Agency, Office of Air and Radiation (620N), Clean Air Markets Division.Google Scholar
  40. Webb, J. R., Cosby, B. J., Deviney, F. A., Eshleman, K. N., & Galloway, J. N. (1995). Change in the acid-base status of Appalachian Mountain catchments following forest defoliation by the gypsy moth. Water, Air and Soil Pollution, 85, 535–540.CrossRefGoogle Scholar
  41. Webb, J. R., Cosby, B. J., Galloway, J. N., & Hornberger, G. M. (1989). Acidification of native brook trout streams in Virginia. Water Resources Research, 25, 1367–1377.CrossRefGoogle Scholar
  42. Welsch, D. L., Webb, J. R., & Cosby, B. J. (2001). Description of Summer 2000 Field Work. Collection of Soil Samples and Tree Corps in the Shenandoah National Park with Summary Soils Data. Charlottesville, VA: Dept. of Environ. Sci., Univ. of Virginia.Google Scholar
  43. Wright, R. F., Aherne, J., Bishop, K., Camarero, L., Cosby, B. J., Erlandsson, M., et al. (2006). Modelling the effect of climate change on recovery of acidified freshwaters: Relative sensitivity of individual processes in the MAGIC model. Science of the Total Environment, 365, 154–166.CrossRefGoogle Scholar
  44. Wright, R. F., Gjessing, E. T., Christophersen, N., Lotse, E., Seip, H. M., Semb, A., et al. (1986). Project RAIN: Changing acid deposition to whole catchments. The first year of treatment. Water, Air and Soil Pollution, 30, 47–64.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • T. J. Sullivan
    • 1
  • B. J. Cosby
    • 2
  • J. R. Webb
    • 2
  • R. L. Dennis
    • 3
  • A. J. Bulger
    • 2
  • F. A. DevineyJr.
    • 2
  1. 1.E&S Environmental Chemistry, Inc.CorvallisUSA
  2. 2.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  3. 3.Air Resources LaboratoryNational Oceanic and Atmospheric AdministrationResearch Triangle ParkUSA

Personalised recommendations