Environmental Monitoring and Assessment

, Volume 136, Issue 1–3, pp 245–256 | Cite as

Macrofaunal recovery following TBT ban

Long-term recovery of subtidal macrofaunal communities in relation to declining levels of TBT contamination
Article

Abstract

In the United Kingdom, the use of TBT-based anti-fouling paints on small vessels was banned in 1987, and a biological study of the Crouch Estuary, a yachting centre on the south-eastern coast of the UK, was conducted in order to determine the ecological improvements resulting from this legislation. We present the changes in the macro-infaunal communities along the estuary in relation to declining TBT concentrations between 1987 and 2005. Although the major changes in response to the ban were observed within the first 3 years (primarily an increase in the number of crustacean taxa and a shift in community structure), with changes still apparent between three and 5 years, the temporal duration of this study allowed the rapidity of the response to be truly determined.

Keywords

TBT contamination Macro-infauna Monitoring Recovery South-east England 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolam, S. G., Schratzberger, M., & Whomersley, P. (2004). Macrofaunal recolonization in intertidal mudflats: The effect of organic content and particle size. Journal of Experimental Marine Biology and Ecology, 306, 157–180.CrossRefGoogle Scholar
  2. Clark, R. B. (1989). Marine pollution, 2nd ed. (220 pp). Oxford: Clarendon.Google Scholar
  3. Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: User Manual/Tutorial. Primer-E, PML, Plymouth, UK 190 pp.Google Scholar
  4. Clarke, K. R., & Warwick, R. M. (1994). Change in marine communities: An approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Natural Environment Research Council, UK, 144 pp.Google Scholar
  5. Cledon, M., Theobald, N., Gerwinski, W., & Penchaszedeh, P. E. (2006). Imposex and organotin compounds in marine gastropods and sediments from the Mar Del Plata coast, Argentina. Journal of the Marine Biological Association of the UK, 86, 751–755.CrossRefGoogle Scholar
  6. Dahllof, I., Agrenius, S., Blanck, H., Hall, P., Magnusson, K., & Molander, S. (2001). The effect of TBT on the structure of a marine sediment community – A boxcosm study. Marine Pollution Bulletin, 42, 689–695.CrossRefGoogle Scholar
  7. Dowson, P. H., Bubb, J. M., & Lester, J. N. (1993). Temporal distribution of organotins in the aquatic environment: Five years after the 1987 UK retail ban on TBT based antifouling paints. Marine Pollution Bulletin, 26, 487–494.CrossRefGoogle Scholar
  8. Fioroni, P., Oehlmann, J., & Stroben, E. (1991). The pseudohermaphroditism of prosobranchs; morphological aspects. Zoologischer Anzeiger, 226, 1–26.Google Scholar
  9. Folk, R. L. (1980). Petrology of sedimentary rocks (184 pp.). Texas, USA: Hemphill.Google Scholar
  10. Great Britain-Parliament (1985). Food and Environment Protection Act, 1985. Her Majesty’s Stationary Office, London, 38 pp., Chapter 48.Google Scholar
  11. Hawkins, S. J., Gibbs, P. E., Pope, N. D., Burt, G. R., Chesman, B. S., Bray, S. et al. (2002). Recovery of polluted ecosystems: The case for long-term studies. Marine Environmental Research, 54, 215–222.CrossRefGoogle Scholar
  12. Hoch, M. (2001). Organotin compounds in the environment – An overview. Applied Geochemistry, 16, 719–743.CrossRefGoogle Scholar
  13. Kelly, J. R., Rudnick, D. T., Morton, D., Buttel, L. A., & Levine, S. N. (1990). Tributyltin and invertebrates of a seagrass ecosystem: Exposure and repsonse of different species. Marine Environmental Research, 29, 245–276.CrossRefGoogle Scholar
  14. Langston, W. J., & Burt, G. R. (1991). Bioavailability and effects of sediment-bound TBT in deposit-feeding clams, Scrobicularia plana. Marine Environmental Research, 32, 61–77.CrossRefGoogle Scholar
  15. Langston, W. J., Gibbs, P. E., Pascoe, P. L., Chesman, B. S., Burt, G. R., Pope, N. D. et al. (2000). Tributyltin (TBT) impact in the Thames estuary. Plymouth Marine Laboratory and Environmental Agency, Thames Region.Google Scholar
  16. Lapota, D., Rosenberger, D. E., Platter-Reiger, M. F., & Seligmann, P. F. (1992). Growth and survival of Mytilus edulis larvae exposed to low levels of dibutyltin and tributyltin. Marine Biology, 115, 413–419.CrossRefGoogle Scholar
  17. Matthiessen, P., & Gibbs, P. E. (1998). Critical appraisal of the evidence for tributyltin- mediated endocrine disruption in molluscs. Environmental Toxicology and Chemistry, 17, 37–43.CrossRefGoogle Scholar
  18. Matthiessen, P., Kilbride, R., Mason, C., Pendle, M., Rees, H., & Waldock, R. (1999). Monitoring the recovery of the benthic community in the River Crouch following TBT contamination. Final report for the Department of the Environment, Transport and the Regions (EPG 1/5/92), CEFAS, Burnham-on-Crouch, Essex.Google Scholar
  19. Matthiessen, P., Waldock, R., Thain, J. E., Waite, M. E., & Scrope-Howe, S. (1995). Changes in periwinkle (Littorina littorea) populations following the ban on TBT-based antifoulings on small boats in the United Kingdom. Ecotoxicology and Environmental Safety, 30, 180–194.CrossRefGoogle Scholar
  20. Miller, B., & Boyle, J. (2003). Assessment of TBT impacts and concentrations in Loch Ryan, Scotland. Scottish Environment Protection Agency, Tidal Waters, East Kilbride, Glasgow.Google Scholar
  21. Rees, H. L., Waldock, R., Matthiessen, P., & Pendle, M. A. (1999). Surveys of the epibenthos of the Crouch estuary (United Kingdom) in relation to TBT contamination. Journal of the Marine Biological Association UK, 79, 209–223.CrossRefGoogle Scholar
  22. Rees, H. L., Waldock, R., Matthiessen, P., & Pendle, M. A. (2001). Improvements in the epifauna of the Crouch Estuary (United Kingdom) following a decline in TBT concentrations. Marine Pollution Bulletin, 42(2), 137–144.CrossRefGoogle Scholar
  23. Ruiz, J. M., Bachelet, G., Caumette, P., & Donard, O. F. X. (1996). Three decades of tributyltin in the coastal environment with emphasis on Arcachon Bay, France. Environmental Pollution, 93, 195–203.CrossRefGoogle Scholar
  24. Ruiz, J. M., Bryan, G. W., Wigham, G. D., & Gibbs, P. E. (1995). Effects of Tributyltin (TBT) exposure on the reproduction and embryonic development of the bivalve Scrobicularia plana. Marine Environmental Research, 40, 363–379.CrossRefGoogle Scholar
  25. Smith, B. S. (1971). Sexuality in the American mud snail, Nassarius obsoletus (Say). Proceedings of the Malacological Society of London, 39, 377–378.Google Scholar
  26. Thomas, K. V., Blake, S. J., & Waldock, M. J. (2000). Antifouling paint booster biocide contamination in UK marine sediments. Marine Pollution Bulletin, 40, 739–745.CrossRefGoogle Scholar
  27. Waite, M. E., Waldock, M. J., Thain, J. E., Smith, D. J., & Milton, S. M. (1991). Reductions in TBT concentrations in UK estuaries following legislation in 1986 and 1987. Marine Environmental Research, 32, 89–111.CrossRefGoogle Scholar
  28. Waldock, M. J., Thain, J. E., & Waite, M. E. (1987). The distribution and potential toxic effects of TBT in estuaries during 1986. Applied Organometallic Chemistry, 1, 287–301.CrossRefGoogle Scholar
  29. Waldock, R., Rees, H. L., Matthiessen, P., & Pendle, M. A. (1999). Surveys of the benthic infauna of the Crouch estuary in relation to TBT contamination. Journal of the Marine Biological Association UK, 79, 225–232.CrossRefGoogle Scholar
  30. Waldock, M. J., Waite, M. E., Miller, D., Smith, D. J., & Law, R. J. (1989). The determination of total tin and organotin compounds in environmental samples. Aquatic Environmental Protection Analytical Methods, MAFF Directorate of Fisheries Research, Lowestoft. (4), 25 pp.Google Scholar
  31. Webbe, G. (1987). The toxicology of molluscicides. Oxford: Pergamon.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Centre for Environment, Fisheries and Aquaculture ScienceBurnham-on-CrouchUK

Personalised recommendations