Advertisement

Environmental Monitoring and Assessment

, Volume 136, Issue 1–3, pp 147–160 | Cite as

Heavy metal contamination from mining sites in South Morocco: Monitoring metal content and toxicity of soil runoff and groundwater

  • Hicham El Khalil
  • Ouafae El Hamiani
  • Gabriel Bitton
  • Naaila Ouazzani
  • Ali Boularbah
Article

Abstract

The aim of the present work is the assessment of metal toxicity in runoff, in their contaminated soils and in the groundwater sampled from two mining areas in the region of Marrakech using a microbial bioassay MetPLATE™. This bioassay is based on the specific inhibition of the β-galactosidase enzyme of a mutant strain of Escherichia coli, by the metallic pollutants. The stream waters from all sampling stations in the two mines were all very toxic and displayed percent enzyme inhibition exceeding 87% except SWA4 and SWB1 stations in mine C. Their high concentrations of copper (Cu) and zinc (Zn) confirm the acute toxicity shown by MetPLATE. The pH of stream waters from mine B and C varied between 2.1 and 6.2 and was probably responsible for metal mobilization, suggesting a problem of acid mine drainage in these mining areas. The bioassay MetPLATE™ was also applied to mine tailings and to soils contaminated by the acidic waters. The results show that the high toxicity of these soils and tailings was mainly due to the relatively concentration of soluble Zn and Cu. The use of MetPLATE™ in groundwater toxicity testing shows that, most of the samples exhibited low metal toxicity (2.7–45.5% inhibition) except GW3 of the mine B (95.3% inhibition during the wet season and 82.9% inhibition during the dry season). This high toxicity is attributed to the higher than usual concentrations of Cu (189 μg Cu l−1) and Zn (1505 μg Zn l−1). These results show the potential risk of the contamination of different ecosystems situated to the vicinity of these two metalliferous sites. The general trend observed was an increase in metal toxicity measured by the MetPLATE with increasing total and mobile metal concentrations in the studied matrices. Therefore, the MetPLATE bioassay is a reliable and fast bioassay to estimate the metals toxicity in the aquatic and solids samples.

Keywords

Groundwater Heavy metals Metal toxicity testing MetPLATE™ Mining sites Soil runoff 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarro, A., Bouchta, R., & Barodi, E. B. (1998). Activité minière au Maroc. Chronique Miniere Research & Exploration, 531–532, 3–8.Google Scholar
  2. Adriano, D. C. (1986). Trace elements in the terrestrial environment. Berlin Heidelberg New York: Springer.Google Scholar
  3. Association Française de Normalisation (AFNOR) (1983). Eaux, méthodes d’essai (2ème edn). Paris: A.F.N.O.R.Google Scholar
  4. Baek, S. Y., Lee, M. J., Jung, H. S., Kim, H. J., Lee, Ch. R., Yoo, C., et al. (2003). Effect of Manganese exposure on MPTP Neurotoxicities. Neuro Toxicology, 24, 657–665.Google Scholar
  5. Baize, D. (1997). Teneurs totales en éléments traces métalliques dans les sols (France). Paris: Editions INRA.Google Scholar
  6. Baker, B. J., & Banfield, J. F. (2003). Microbial communities in acid mine drainage. FEMS Microbiology, Ecology, 44, 139–152.CrossRefGoogle Scholar
  7. Bell, F. G., Bullock, S. E. T., Hälbich, T. F. J., & Lindsay, P. (2001). Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. International Journal of Coal Geology, 45, 195–216.CrossRefGoogle Scholar
  8. Bitton, G., Jung, K., & Koopman, B. (1994). Evaluation of microplate assay specific for heavy metal toxicity. Archives of Environmental Contamination and Toxicology, 27, 215–228.CrossRefGoogle Scholar
  9. Bitton, G., Koopman, B., & Agami, O. (1992). MetPAD™: A bioassay for rapid assessment of heavy metal toxicity in wastewater. Water Environment Research, 64, 834–836.Google Scholar
  10. Boularbah, A., Schwartz, C., Bitton, G. Aboudrar, W., Ouhammou, A., & Morel, J. L. (2006b). Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63, 811–817.CrossRefGoogle Scholar
  11. Boularbah, A., Schwartz, C., Bitton, G., & Morel, J. L. (2006a). Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere, 63, 802–810.CrossRefGoogle Scholar
  12. Cheggour, M., Chafik, A., Fisher, N. S., & Benbrahim, S. (2005). Metal concentrations in sediments and clams in four Moroccan estuaries. Marine Environmental Research, 59, 119–137.CrossRefGoogle Scholar
  13. Concas, A., Ardau, C., Cristini, A., Zuddas, P., & Cao, G. (2006). Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site. Chemosphere, 63, 244–253.CrossRefGoogle Scholar
  14. Direction des Mines, de la Géologie et de l’Energie (1975). Ressources en eau de Maroc, Tome 2; Plaines et Bassins du Maroc atlantique. Rabat: Service Géologie du Maroc.Google Scholar
  15. Eddebbi, A., Saquaque, A., Kersit, M., & Chbihi, A. (1998). L’amas sulfuré de Hajar (Guemassa, Maroc). Chronique Miniere Research & Exploration, 531–532, 45–54.Google Scholar
  16. El Gharmali, A., Rada, A., El Adnani, M., Tahlil, N., El Meray, M., & Nejemeddine, A. (2004). Impact of acid mining drainage on the quality of superficial waters and sediment in the Marrakech region, Morocco. Environment & Technology, 25, 1431–1442.CrossRefGoogle Scholar
  17. El Khalil, H., Boularbah, A., Schwartz, C., & Morel, J. L. (2006). Contribution of technologic materials to the metal bioavailable fraction of urban soils in Marrakech (Morocco). In Proceeding of 18th world congress of soil science, July 9–15. Philadelphia, Pennsylvania, USA.Google Scholar
  18. EPA (2003). National primary drinking water standards, U.S. Environmental Protection Agency, EPA 816-F-03-016.Google Scholar
  19. España, L. S., Pamo, E. L., Santofimia, E., Aduvire, O., Reyes, J., & Barettino, D. (2005). Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20, 1320–1356.CrossRefGoogle Scholar
  20. Ghabbour, E. A., Shaker, M., El-Toukhy, A., Abid, I. M., & Davies, G. (2005). Thermodynamic of metal cation binding by a solid soil-derived humic acid: Binding of Fe(III), Pb(II), and Cu(II). Chemosphere, 63, 477–483.CrossRefGoogle Scholar
  21. Gorell, J. M., Peterson, E. L., Rybicki, B. A., & Johnson, C. C. (2004). Multiple risk factors for Parkinson’s disease. Journal of Neurological Sciences, 217, 169–174.CrossRefGoogle Scholar
  22. Hernández, D., Plaza, C., Senesi, N., & Polo, A. (2006). Detection of copper (II) and zinc (II) binding to humic acids from pig slurry and amended soils by fluorescence spectroscopy. Environmental Pollution, 143, 212–220.CrossRefGoogle Scholar
  23. Herreweghe, S. V., Swennen, R., Cappuyns, V., & Vandecasteele, C. (2002). Chemical associations of heavy metals and metalloids in contaminated soils near former ore treatment plants: A differentiated approach with emphasis on pHstat-leaching. Journal of Geochemical Exploration, 76, 113–138.CrossRefGoogle Scholar
  24. Hibti, M. (2001). Les amas sulfurés des Guemasse et des Jbilet (Meseta sud-occidentale, Maroc): Témoins de l’hydrothermalisme précoce dans le bassin Mestien, Doctorat d’Etat ès- Sciences, Faculté des Sciences, Marrakech.Google Scholar
  25. Hydraulic Basin of Tensift Agency ABHT (2004). Qualité des ressources en eau, Technical Note, juin 2004, Marrakech.Google Scholar
  26. Jung, M. C., Thornton, I., & Chon, H. T. (2002). Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu-W mine in Korea. Science of the Total Environment, 295, 81–89.CrossRefGoogle Scholar
  27. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Boca Raton, Florida: CRC.Google Scholar
  28. Kraemer, S. M., & Hering, J. G. (2004). Biogeochemical controls on the mobility and bioavailability of metals in soils and groundwater. Aquatic Sciences, 66, 1–2.CrossRefGoogle Scholar
  29. Lee, J. Y., Choi, J. C., & Lee, K. K. (2005). Variation in heavy metal contamination of stream water and groundwater affected by an abandoned lead–zinc mine in Korea. Environmental Geochemistry and Health, 27, 237–257.CrossRefGoogle Scholar
  30. Liu, W. X., Coveney, R. M., & Chen, J. L. (2003). Environmental quality assessment on a river system polluted by mining activities. Applied Geochemistry, 18, 749–764.CrossRefGoogle Scholar
  31. Lyakhloufi, S., Ouazzani, N., Er-Rouane, S., Hassani, L., & El Hebil, A. (1999). Impact de l’utilisation des eaux usées urbaines brutes sur la qualité de l’eau d’une nappe alluviale près de Marrakech (Maroc). B. Soc. Hist. Nat. Toulouse, 135, 59–70.Google Scholar
  32. Mian, M. H., & Yanful, E. K. (2003). Tailings erosion and resuspension in two mine tailings ponds due to wind waves. Advances in Environmental Research, 7, 745–765.CrossRefGoogle Scholar
  33. Mika, S., & Aimo, O. (1996). Assessing the impact of complexation by EDTA and D.T.P.A. on heavy metal toxicity using Microtox bioassay. Chemosphere, 32, 1485–1497.CrossRefGoogle Scholar
  34. Ministère de l’Environnement (1996). Commission juridique et relations internationales, Normes et Standards, Technical Report, Conseil National de l’Environnement, Morocco.Google Scholar
  35. Misra, V., Jaffery, F. N., & Viswanathan, P. N. (1994). Risk assessment of water pollutants. Environmental Monitoring and Assesstment, 29, 29–40.CrossRefGoogle Scholar
  36. Moncaster, S. J., Bottrell, S. H., Tellam, J. H., Lloyd, J. W., & Konhauser, K. O. (2000). Migration and attenuation of agrochemical pollutants: Insights from isotopic analysis of groundwater sulphate. Journal of Contaminant Hydrology, 43, 147–163.CrossRefGoogle Scholar
  37. Norme Marocaine 03-7-001 (1991). Qualité des eaux d’alimentation Humaine, Service de Normalisation Industrielle Marocaine, Ministère de l’Industrie, du Commerce et de la Mise à Niveau de l’Economie, Maroc.Google Scholar
  38. Passariello, B., Giuliano, V., Quaresima, S., Barbaro, M., Caroli, S., Forte, G., et al. (2002). Evaluation of environmental contamination at an abandoned mining site. Microchemical Journal, 73, 245–250.CrossRefGoogle Scholar
  39. Razo, I., Carrizales, L., Castro, J., Díaz-Barriga, F., & Monroy, M. (2004). Arsenic and heavy metal pollution of soil water and sediments in a semi-arid climate mining area in Mexico. Water, Air and Soil Pollution, 152, 129–152.CrossRefGoogle Scholar
  40. Rodier, J. (1996). L’analyse de l’eau; eaux naturelles, eaux résiduaires, eau de mer. (chimie, physico-chimie, bactériologie, biologie, interprétation des résultats) (8ème edn). Paris: DUNOD.Google Scholar
  41. Rösner, U. (1998). Effects of historical mining activities on surface water and groundwater, an example from northwest Arizona. Environmental Geology, 33, 224–230.CrossRefGoogle Scholar
  42. Salomons, W. (1995). Environmental impact of metals derived from mining activities: Processes, predictions, prevention. Journal of Geochemical Exploration, 52, 5–23.CrossRefGoogle Scholar
  43. Tahiri, M., Benyaïch, F., Bounakhla, M., Bilal, E., Gruffat, J. J., Moutte, J. et al. (2005). Multivariate analysis of heavy metal contents in soils, sediments and water in the region of Meknes (central Morocco). Environmental Monitoring Assessment, 102, 405–417.CrossRefGoogle Scholar
  44. Tarradellas, J., Bitton, G., & Rossel, D. (1997). Soil ecotoxicology. Boca Raton, Florida: CRC.Google Scholar
  45. Umita, T. (1996). Biological mine drainage treatment. Resources, Conservation and Recycling, 16, 179–188.CrossRefGoogle Scholar
  46. WHO (2004). Guidelines of drinking water, Volume 1. Geneva: World Health Organization. www.metplate.com.Google Scholar
  47. WRB (2006). World reference base for soil resources 2006 A framework for international classification, correlation and communication. 2006 edn. Rome: Food and Agriculture Organization of the United Nations (128 pp).Google Scholar
  48. Zhou, P., Yan, H., & Gu, B. (2005). Competitive complexation of metal ions with humic substances. Chemosphere, 58, 1327–1337.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Hicham El Khalil
    • 1
  • Ouafae El Hamiani
    • 1
  • Gabriel Bitton
    • 2
  • Naaila Ouazzani
    • 3
  • Ali Boularbah
    • 1
  1. 1.Faculté des Sciences et Techniques Guéliz, Département de Biologie, Laboratoire Aliments, Environnement et SantéUniversité Cadi AyyadMarrakechMorocco
  2. 2.Department of Environmental Engineering SciencesUniversity of FloridaGainesvilleUSA
  3. 3.Faculté des Sciences Semlalia, Département de Biologie, Laboratoire d’Hydrobiologie, Ecotoxicologie et AssainissementUniversité Cadi AyyadMarrakechMorocco

Personalised recommendations