Environmental Monitoring and Assessment

, Volume 148, Issue 1–4, pp 185–204

Environmental contaminants in Canadian shorebirds

Article
  • 224 Downloads

Abstract

Canadian shorebirds are exposed to environmental contaminants throughout their annual cycle. Contaminant exposure among species varies with diet, foraging behaviour and migration patterns. We sampled twelve species of shorebirds from four locations across Canada to assess their exposure to PCBs, organochlorine pesticides, as well as four trace elements (Hg, Se, Cd, As). ΣPCB and ΣDDT followed by ΣCHL were most frequently found above trace level in the shorebird carcasses. In general, the plover species (American golden, semipalmated, black-bellied) appear to be the most contaminated with organochlorines, whereas Hudsonian and marbled godwits appear to be the least contaminated. Among adult birds, the greater and lesser yellowlegs had the highest hepatic Hg concentrations (2.4–2.7 μg g−1 dw), whereas American golden plovers as well as Hudsonian and marbled godwits contained relatively low levels of Hg (<1 μg g−1 dw). Renal Se concentrations varied from 3.2 to 16.7 μg g−1 dw and exhibited little interspecific or seasonal variation. Renal Cd levels in adult birds were highest in Hudsonian godwits from Quill Lakes (43 μg g−1 dw) and Cape Churchill (12 μg g−1 dw), and lowest (0.8–1.5 μg g−1 dw) in greater and lesser yellowlegs from Cape Churchill and Bay of Fundy. Renal As concentrations varied from 0.06 μg g−1 dw in golden plovers from Cape Churchill to 4.6 and 5.1 μg g−1 dw in dunlin samples from the Pacific coast. There is no evidence that contaminants were adversely affecting the shorebirds sampled from the Canadian locations in this study.

Keywords

Arsenic Cadmium Canada DDT Mercury PCBs Organochlorines Selenium Shorebirds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, S. A., Hobson, K. A., Gratto-Trevor, C. L., & Diamond, A. W. (1996). Conventional and isotopic determinations of shorebird diets at an inland stopover: The importance of invertebrates and Potamogeton pectinatus tubers. Canadian Journal of Zoology, 74, 1057–1068.CrossRefGoogle Scholar
  2. Augustijn-Beckers, P. W. M., Hornsby, A. G., & Wauchope, R. D. (1994). The SCS/ARS/CES Pesticide Properties Database for environmental decision-making. II. Additional compounds. Reviews of Environmental Contamination and Toxicology, 137, 1–82.Google Scholar
  3. Baker, M. C. (1977). Shorebird food habits in the eastern Canadian Arctic. Condor, 79, 56–62.CrossRefGoogle Scholar
  4. Ballschmiter, K., & Zell, M. (1980). Analysis of polychlorinated biphenyls (PCBs) by glass capillary gas chromatography. Composition of technical Aroclor- and Clophen-PCB mixtures. Fresenius Zeitschrift für Analytische Chemie, 302, 20–31.CrossRefGoogle Scholar
  5. Banasch, U., Goossen, J. P., Riez, A. E., Casler, C., & Barradas, R. D. (1992). Organochlorine contaminants in migrant and resident prey of peregrine falcons, Falco peregrinus, in Panama, Venezuela and Mexico. Canadian Field-Naturalist, 106, 493–498.Google Scholar
  6. Baril, A., Elliott, J. E., Somers, J. D., & Ericksen, G. (1989). Contaminants in the prey of the peregrine falcon in Canada. (Technical Report Series No. 62). Ottawa: Canadian Wildlife Service.Google Scholar
  7. Baril, A., Elliott, J. E., Somers, J. D., & Ericksen, G. (1990). Residue levels of environmental contaminants in prey species of the peregrine falcon, Falco peregrinus, in Canada. Canadian Field-Naturalist, 104, 273–284.Google Scholar
  8. Blomqvist, S., Frank, A., & Petersson, L. R. (1987). Metals in liver and kidney tissues of autumn-migrating dunlin Calidris alpina and curlew sandpiper Calidris ferruginea staging at the Baltic Sea. Marine Ecology Progress Series, 35, 1–13.CrossRefGoogle Scholar
  9. Blus, L. J., Henny, C. J., & Krynitsky, A. (1985). Organochlorine-induced mortality and residues in Long-billed Curlews from Oregon. Condor, 87, 563–565.CrossRefGoogle Scholar
  10. Braune, B. M. (2007). Temporal trends of organochlorines and mercury in seabird eggs from the Canadian Arctic, 1975 to 2003. Environmental Pollution, 148, 599–613.CrossRefGoogle Scholar
  11. Braune, B. M., & Malone, B. J. (2006). Organochlorines and mercury in waterfowl harvested in Canada. Environmental Monitoring and Assessment, 114, 331–359.CrossRefGoogle Scholar
  12. Brown, J. J., & Brown, A. W. A. (1970). Biological fate of DDT in a sub-arctic environment. Journal of Wildlife Management, 34, 929–940.CrossRefGoogle Scholar
  13. Buchanan, J. B., Brennan, L. A., Schick, C. T., Finger, M. A., Johnson, T. M., & Herman, S. G. (1985). Dunlin weight changes in relation to food habits and available prey. Journal of Field Ornithology, 56, 265–272.Google Scholar
  14. Burger, J., & Gochfeld, M. (2002). Effects of chemicals and pollution on seabirds. In E. A. Schreiber, & J. Burger (Eds.), Biology of marine birds (pp. 485–525). Boca Raton, FL: CRC Press.Google Scholar
  15. Butler, R. W., & Campbell, R. W. (1987). The birds of the Fraser River delta: Populations, ecology and international significance. (Occasional Paper No. 65). Ottawa: Canadian Wildlife Service.Google Scholar
  16. Capparella, A. P., Klemens, J. A., Harper, R. G., & Frick, J. A. (2003). Lack of widespread organochlorine pesticide contamination in South American resident passerines. Bulletin of Environmental Contamination and Toxicology, 70, 769–774.CrossRefGoogle Scholar
  17. Chou, C. L., Paon, L. A., Moffatt, J. D., & King, T. (2003). Selection of bioindicators for monitoring marine environmental quality in the Bay of Fundy, Atlantic Canada. Marine Pollution Bulletin, 46, 756–762.CrossRefGoogle Scholar
  18. Court, G. S., Gates, C. C., Boag, D. A., MacNeil, J. D., Bradley, D. M., Fesser, A. C., et al. (1990). A toxicological assessment of peregrine falcons, Falco peregrinus tundrius, breeding in the Keewatin District of the Northwest Territories, Canada. Canadian Field-Naturalist, 104, 255–272.Google Scholar
  19. Custer, T. W., & Myers, J. P. (1990). Organochlorine, mercury and selenium in wintering shorebirds from Washington, USA and California, USA. California Fish & Game, 76, 118–125.Google Scholar
  20. DeWeese, L. R., McEwen, L. C., Hensler, G. L., & Petersen, B. E. (1986). Organochlorine contaminants in passeriformes and other avian prey of the peregrine falcon in the western United States. Environmental Toxicology and Chemistry, 5, 675–693.CrossRefGoogle Scholar
  21. Eisler, R. (1988). Arsenic hazards to fish, wildlife, and invertebrates: A synoptic review. (Contaminant Hazard Reviews Report No. 12), U.S. Department of the Interior, Fish and Wildlife Service, Biological Report 85(1.12).Google Scholar
  22. Elliott, J. E., Morrissey, C. A., Henny, C. J., Inzunza, E. R., & Shaw, P. (2007). Satellite telemetry and prey sampling reveal contaminant sources to Pacific Northwest ospreys. Ecological Applications, 17, 1223–1233.CrossRefGoogle Scholar
  23. Elphick, C. S., & Klima, J. (2002). Hudsonian Godwit (Limosa haemastica). In A. Poole, & F. Gill (Eds.), The birds of North America, No. 629. Philadelphia, PA: The Birds of North America, Inc.Google Scholar
  24. Elphick, C. S., & Tibbitts, T. L. (1998). Greater Yellowlegs (Tringa melanoleuca). In A. Poole, & F. Gill (Eds.), The birds of North America, No. 355. Philadelphia, PA: The Birds of North America, Inc.Google Scholar
  25. Furness, R. W. (1996). Cadmium in birds. In W. N. Beyer, G. H. Heinz, & A. W. Redmon-Norwood (Eds.), Environmental contaminants in wildlife: Interpreting tissue concentrations (pp. 389–404). Boca Raton, FL: SETAC Special Publication Series, CRC Press.Google Scholar
  26. Fyfe, R. W., Banasch, U., Benavides, V., Hilgert de Benavides, N., Luscombe, A., & Sanchez, J. (1990). Organochlorine residues in potential prey of peregrine falcons, Falco peregrinus, in Latin America. Canadian Field-Naturalist, 104, 285–292.Google Scholar
  27. Gratto, C. L., & Cooke, F. (1987). Geographic variation in the breeding biology of the semipalmated sandpiper. Ornis Scandinavia, 18, 233–235.CrossRefGoogle Scholar
  28. Gratto-Trevor, C. L. (1992). Semipalmated Sandpiper (Calidris pusilla). In A. Poole, P. Stettenheim, & F. Gill (Eds.), The birds of North America, No. 6. Philadelphia: The Academy of Natural Sciences; Washington, DC: The American Ornithologists’ Union.Google Scholar
  29. Gratto-Trevor, C. L. (2000). Marbled Godwit (Limosa fedoa). In A. Poole, & F. Gill (Eds.), The birds of North America, No. 492. Philadelphia, PA: The Birds of North America, Inc.Google Scholar
  30. Harding, L. E., Graham, M., & Paton, D. (2005). Accumulation of selenium and lack of severe effects on productivity of American dippers (Cinclus mexicanus) and spotted sandpipers (Actitis macularia). Archives of Environmental Contamination and Toxicology, 48, 414–423.CrossRefGoogle Scholar
  31. Heinz, G. H. (1996). Selenium in birds. In W. N. Beyer, G. H. Heinz, & A. W. Redmon-Norwood (Eds.), Environmental contaminants in wildlife: Interpreting tissue concentrations (pp. 447–458). Boca Raton, FL: SETAC Special Publication Series, CRC Press.Google Scholar
  32. Hicklin, P. W. (1987). The migration of shorebirds in the Bay of Fundy. Wilson Bulletin, 99, 540–570.Google Scholar
  33. Hicklin, P. W., & Smith, P. C. (1979). The diets of five species of migrant shorebirds in the Bay of Fundy. Proceedings of the Nova Scotia Institute of Science, 29, 483–488.Google Scholar
  34. Hoffman, D. J., Rice, C. P., & Kubiak, T. J. (1996). PCBs and dioxins in birds. In W. N. Beyer, G. H. Heinz, & A. W. Redmon-Norwood (Eds.), Environmental contaminants in wildlife: Interpreting tissue concentrations (pp. 165–207). Boca Raton, FL: SETAC Special Publication Series, CRC Press.Google Scholar
  35. Holmes, R. T., & Pitelka, F. A. (1968). Food overlap among co-existing sandpipers on northern Alaskan tundra. Systematic Zoology, 17, 305–318.CrossRefGoogle Scholar
  36. Hothem, R. L., & Powell, A. N. (2000). Contaminants in eggs of western snowy plovers and California least terns: Is there a link to population decline? Bulletin of Environmental Contamination and Toxicology, 65, 42–50.CrossRefGoogle Scholar
  37. Hubbard, J. P., & Schmitt, C. G. (1988). Organochlorine residues in avian prey of peregrine falcons breeding in New Mexico. In R. L. Glinski, et al. (Eds.), Proceedings of the Southwest Raptor Management Symposium and Workshop, May 21–24, 1986, Tucson, AZ (pp. 176–181). National Wildlife Federation Science and Technology Series No. 11, Washington, DC.Google Scholar
  38. Hui, C. A. (1998). Metal and trace element burdens in two shorebird species at two sympatric wintering sites in southern California. Environmental Monitoring and Assessment, 50, 233–247.CrossRefGoogle Scholar
  39. Hui, C. A., & Beyer, W. N. (1998). Sediment ingestion of two sympatric shorebird species. Science of the Total Environment, 224, 227–233.CrossRefGoogle Scholar
  40. Hui, C. A., Takekawa, J. Y., & Warnock, S. E. (2001). Contaminant profiles of two species of shorebirds foraging together at two neighboring sites in south San Francisco Bay, California. Environmental Monitoring and Assessment, 71, 107–121.CrossRefGoogle Scholar
  41. Hung, G. A., & Chmura, G. L. (2006). Mercury accumulation in surface sediments of salt marshes of the Bay of Fundy. Environmental Pollution, 142, 418–431.CrossRefGoogle Scholar
  42. Jehl Jr., J. R., Klima, J., & Harris, R. E. (2001). Short-billed Dowitcher (Limnodromus griseus). In A. Poole, & F. Gill (Eds.), The birds of North America, No. 564. Philadelphia, PA: The Birds of North America, Inc.Google Scholar
  43. Johnson, O. W., & Connors, P. G. (1996). American Golden-Plover (Pluvialis dominica), Pacific Golden-Plover (Pluvialis fulva). In A. Poole, & F. Gill (Eds.), The birds of North America, No. 201–202. Washington, D.C.: The Academy of Natural Sciences, Philadelphia and The American Ornithologists’ Union.Google Scholar
  44. Johnstone, R. M., Court, G. S., Fesser, A. C., Bradley, D. M., Oliphant, L. W., & McNeil, J. D. (1996). Long-term trends and sources of organochlorine contamination in Canadian tundra peregrine falcons, Falco peregrinus tundrius. Environmental Pollution, 93, 109–120.CrossRefGoogle Scholar
  45. Mason, R. P., Laporte, J.-M., & Andres, S. (2000). Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Archives of Environmental Contamination and Toxicology, 38, 283–297.CrossRefGoogle Scholar
  46. McFarland, C. N., Bendell-Young, L. I., Guglielmo, C., & Williams, T. D. (2002). Kidney, liver and bone cadmium content in the western sandpiper in relation to migration. Journal of Environmental Monitoring, 4, 791–795.CrossRefGoogle Scholar
  47. Morrison, R. I. G., Bourget, A., Butler, R., Dickson, H. L., Gratto-Trevor, C., Hicklin, P., et al. (1994b). A preliminary assessment of the status of shorebird populations in Canada. (Progress Notes No. 208). Ottawa: Canadian Wildlife Service.Google Scholar
  48. Morrison, R. I. G., Downes, C., & Collins, B. (1994a). Population trends of shorebirds on fall migration in eastern Canada 1974–1991. Wilson Bulletin, 106, 431–447.Google Scholar
  49. Morrison, M. L., & Kiff, L. F. (1979). Eggshell thickness in American shorebirds before and since DDT. Canadian Field-Naturalist, 93, 187–190.Google Scholar
  50. Napolitano, G. E., & Ackman, R. G. (1989). Lipids and hydrocarbons in Corophium volutator from Minas Basin, Nova Scotia. Marine Biology, 100, 333–338.CrossRefGoogle Scholar
  51. Napolitano, G. E., Ackman, R. G., & Parrish, C. C. (1992). Lipids and lipophilic pollutants in three species of migratory shorebirds and their food in Shepody Bay (Bay of Fundy, New Brunswick). Lipids, 27, 785–790.CrossRefGoogle Scholar
  52. Neff, J. M. (1997). Ecotoxicology of arsenic in the marine environment. Environmental Toxicology and Chemistry, 16, 917–927.CrossRefGoogle Scholar
  53. Neugebauer, E. A., Sans Cartier, G. L., & Wakeford, B. J. (2000). Methods for the determination of metals in wildlife tissues using various atomic absorption spectrophotometry techniques. (Technical Report Series No. 337). Ottawa: Canadian Wildlife Service.Google Scholar
  54. Nol, E., & Blanken, M. S. (1999). Semipalmated Plover (Charadrius semipalmatus). In A. Poole & F. Gill (Eds.), The birds of North America, No. 444. Philadelphia, PA: The Birds of North America, Inc.Google Scholar
  55. Norris, D. R., Lank, D. B., Pither, J., Chipley, D., Ydenberg, R. C., & Kyser, T. K. (2007). Trace element profiles as unique identifiers of western sandpiper (Calidris mauri) populations. Canadian Journal of Zoology, 85, 579–583.CrossRefGoogle Scholar
  56. Norstrom, R. J., Simon, M., Muir, D. C. G., & Schweinsburg, R. E. (1988). Organochlorine contaminants in arctic marine food chains: Identification, geographical distribution, and temporal trends in polar bears. Environmental Science and Technology, 22, 1063–1071.CrossRefGoogle Scholar
  57. Norstrom, R. J., & Won, H. T. (1985). Long-term preservation of egg and tissue homogenates for determination of organochlorine compounds: Freezing versus freeze-drying. Journal of the Association of Official Analytical Chemists, 68, 130–135.Google Scholar
  58. Ohlendorf, H. M. (2003). Ecotoxicology of selenium. In D. J. Hoffman, B. A. Rattner, G. A. Burton Jr., & J. Cairns Jr. (Eds.), Handbook of ecotoxicology ((pp. 465–500)2nd ed.). Boca Raton, FL: Lewis Publishers.Google Scholar
  59. Ohlendorf, H. M., Hoffman, D. J., Saiki, M. K., & Aldrich, T. W. (1986). Embryonic mortality and abnormalities of aquatic birds: Apparent impacts of selenium from irrigation drainwater. Science of the Total Environment, 52, 49–63.CrossRefGoogle Scholar
  60. Ohlendorf, H. M., Hothem, R. L., Bunck, C. M., & Marois, K. C. (1990). Bioaccumulation of selenium in birds at Kesterson Reservoir, California. Archives of Environmental Contamination and Toxicology, 19, 495–507.CrossRefGoogle Scholar
  61. Owens, M., & Cornwell, J. C. (1995). Sedimentary evidence for decreased heavy-metal inputs to the Chesapeake Bay. Ambio, 24, 24–27.Google Scholar
  62. Paulson, D. R. (1995). Black-bellied Plover (Pluvialis squatarola). In A. Poole & F. Gill (Eds.), The birds of North America, No. 186. The Academy of Natural Sciences, Philadelphia, and The American Ornithologists’ Union, Washington, D.C.Google Scholar
  63. Peakall, D. B. (1996). Dieldrin and other cyclodiene pesticides in wildlife. In W. N. Beyer, G. H. Heinz, & A. W. Redmon-Norwood (Eds.), Environmental contaminants in wildlife: Interpreting tissue concentrations (pp. 73–97). Boca Raton, FL: SETAC Special Publication Series, CRC Press.Google Scholar
  64. Peakall, D., & Burger, J. (2003). Methodologies for assessing exposure to metals: Speciation, bioavailability of metals, and ecological host factors. Ecotoxicology and Environmental Safety, 56, 110–121.CrossRefGoogle Scholar
  65. Pienkowski, M. W., Lloyd, C. S., & Minton, C. D. T. (1979). Seasonal and migrational weight changes in Dunlins. Bird Study, 26, 134–138.CrossRefGoogle Scholar
  66. Richards, A. (1991). Shorebirds of Northern America. Canadian Nature Guides. New York: Gallery Books.Google Scholar
  67. Schick, C. T., Brennan, L. A., Buchanan, J. B., Finger, M. A., Johnson, T. M., & Herman, S. G. (1987). Organochlorine contamination in shorebirds from Washington State and the significance for their falcon predators. Environmental Monitoring and Assessment, 9, 115–131.CrossRefGoogle Scholar
  68. Skagen, S. K., & Oman, H. D. (1996). Dietary flexibility of shorebirds in the western hemisphere. Canadian Field-Naturalist, 110, 419–444.Google Scholar
  69. Skeel, M. A., & Mallory, E. P. (1996). Whimbrel (Numenius phaeopus). In A. Poole & F. Gill (Eds.), The birds of North America, No. 219. The Academy of Natural Sciences, Philadelphia, PA, and The American Ornithologists’ Union, Washington, D.C.Google Scholar
  70. Takekawa, J. Y., & Warnock, N. (2000). Long-billed Dowitcher (Limnodromus scolopaceus). In A. Poole, & F. Gill (Eds.), The birds of North America, No. 493. Philadelphia, PA: The Birds of North America, Inc.Google Scholar
  71. Thomas, C. A., & Bendell-Young, L. I. (1998). Linking the sediment geochemistry of an intertidal region to metal bioavailability in the deposit feeder Macoma balthica. Marine Ecology Progress Series, 173, 197–213.CrossRefGoogle Scholar
  72. Thompson, D. R. (1996). Mercury in birds and terrestrial mammals. In W. N. Beyer, G. H. Heinz, & A. W. Redmon-Norwood (Eds.), Environmental contaminants in wildlife: Interpreting tissue concentrations (pp. 341–356). Boca Raton, FL: SETAC Special Publication Series, CRC Press.Google Scholar
  73. Tibbitts, T. L., & Moskoff, W. (1999). Lesser Yellowlegs (Tringa flavipes). In A. Poole, & F. Gill (Eds.), The birds of North America, No. 427. Philadelphia, PA: The Birds of North America, Inc.Google Scholar
  74. Turle, R., & Collins, B. (1992). Validation of the use of pooled samples for monitoring of contaminants in wildlife. Chemosphere, 25, 463–469.CrossRefGoogle Scholar
  75. US EPA (1994). Method 6020. Inductively Coupled Plasma–Mass Spectrometry. Retrieved December 11, 2007, from http://www.epa.gov/sw-846/pdfs/6020.pdf.
  76. US EPA (1996). Method 3050B. Acid Digestion of Sediments, Sludges, and Soils. Retrieved December 11, 2007, from http://www.epa.gov/sw-846/pdfs/3050b.pdf.
  77. Wakeford, B., & Turle, R. (1997). In-house reference materials as a means to quality assurance: The Canadian Wildlife Service experience. In R. E. Clement, L. H. Keith, & K. W. M. Siu (Eds.), Reference materials for environmental analysis (pp. 205–231). Boca Raton, FL: CRC Press.Google Scholar
  78. Warnock, N. D., & Gill, R. E. (1996). Dunlin (Calidris alpina). In A. Poole & F. Gill (Eds.), The birds of North America , No. 203. The Academy of Natural Sciences, Philadelphia, PA, and The American Ornithologists’ Union, Washington, D.C.Google Scholar
  79. White, D. H., King, K. A., & Prouty, R. M. (1980). Significance of organochlorine and heavy metal residues in wintering shorebirds at Corpus Christi, Texas, 1976–77. Pesticide Monitoring Journal, 14, 58–63.Google Scholar
  80. White, D. H., Mitchell, C. A., & Kaiser, T. E. (1983). Temporal accumulation of organochlorine pesticides in shorebirds wintering on the South Texas Coast, 1979–80. Archives of Environmental Contamination and Toxicology, 12, 241–245.CrossRefGoogle Scholar
  81. Wiemeyer, S. N. (1996). Other organochlorine pesticides in birds. In W. N. Beyer, G. H. Heinz, & A. W. Redmon-Norwood (Eds.), Environmental contaminants in wildlife: Interpreting tissue concentrations (pp. 99–115). Boca Raton, FL: SETAC Special Publication Series, CRC Press.Google Scholar
  82. Wurster, D. H., Wurster Jr., C. F., & Strickland, W. N. (1965). Bird mortality following DDT spray for Dutch elm disease. Ecology, 46, 488–499.CrossRefGoogle Scholar
  83. Zar, J. H. (1999). Biostatistical analysis (4th ed.). Upper Saddle River, NJ: Prentice-Hall, Inc.Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.National Wildlife Research Centre, Environment CanadaCarleton UniversityOttawaCanada
  2. 2.British Trust for OrnithologyThetford, NorfolkUK

Personalised recommendations