Environmental Monitoring and Assessment

, Volume 147, Issue 1–3, pp 159–170 | Cite as

Application of multivariate statistical techniques to evaluation of water quality in the Mała Wełna River (Western Poland)

  • M. Sojka
  • M. SiepakEmail author
  • A. Zioła
  • M. Frankowski
  • S. Murat-Błażejewska
  • J. Siepak


The paper presents the results of determinations of physico-chemical parameters of the Mała Wełna waters, a river situated in Wielkopolska voivodeship (Western Poland). Samples for the physico-chemical analysis were taken in eight gauging cross-sections once a month between May and November 2006. To assess the physico-chemical composition of surface water, use was made of multivariate statistical methods of data analysis, viz. cluster analysis (CA), factor analysis (FA), principal components analysis (PCA), and discriminant analysis (DA). They made it possible to observe similarities and differences in the physico-chemical composition of water in the gauging cross-sections, to identify water quality indicators suitable for characterising its temporal and spatial variability, to uncover hidden factors accounting for the structure of the data, and to assess the impact of man-made sources of water pollution.


Mała Wełna river Agricultural catchment Environmental monitoring Water quality Multivariate statistical techniques 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brodnjak-Voncina, D., Dobcnik, D., Novic, M., & Zupan, J. (2002). Chemometrics characterisation of the quality of river water. Analytica Chimica Acta, 462, 87–100.CrossRefGoogle Scholar
  2. Charkhabi, A. H., & Sakizadeh, M. (2006). Assessment of spatial variation of water quality parameters in the most polluted branch of the Anzali wetland, Northern Iran. Polish Journal of Environmental Studies, 15, 395–403.Google Scholar
  3. Czarnecka, H. (2005). Hydrographic division of Poland, vols 1 and 2. Warsaw IMGW (in Polish).Google Scholar
  4. Einax, J. W., Truckenbrodt, D., & Kampe, O. (1998). River pollution data interpreted by means of chemometric methods. Microchemical Journal, 58, 315–324.CrossRefGoogle Scholar
  5. Kannel, R. P., Lee, S., Kanel, S. R., & Kahn, S. P. (2007). Chemometric application in classification and assessment of monitoring location of an urban river system. Analytical Chimica Acta, 582, 390–399.CrossRefGoogle Scholar
  6. Kondracki, J. (2000). Geography, geographic and physical mesoregions, Warsaw, Wydawnictwo Naukowe (in Polish).Google Scholar
  7. Kowalkowski, T., Zbytniewski, R., Szpejna, J., & Buszewski, B. (2006). Application of chemometrics in river water classification. Water Research, 40, 744–752.CrossRefGoogle Scholar
  8. Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in blackfoot disease in Taiwan. The Science of the Total Environment, 313, 77–89.CrossRefGoogle Scholar
  9. Marques da Silva, A. M., & Sacomani, L. B. (2001). Using chemical and physical parameters to define the quality of Pardo river water (Botucatu – SP-Brazil). Water Research, 35, 1609–1616.CrossRefGoogle Scholar
  10. Mazerski, J. (2000). Fundamentals of chemometrics, Gdańsk, Wydawnictwo Politechniki Gdańskiej (in Polish).Google Scholar
  11. Mendiguchia, C., Moreno, C., Galindo-Riano, M. D., & Garcia-Vargas, M. (2004). Using chemometric tools to assess anthropogenic effect in river water, a case study: Guadalquivir River (Spain). Analytical Chimica Acta, 515, 143–149.CrossRefGoogle Scholar
  12. Ouyang, Y. (2005). Evaluation of river water quality monitoring stations by principal component analysis. Water Research, 39, 2621–2635.CrossRefGoogle Scholar
  13. Ouyang, Y., Nkedi-Kizza, P., Wu, Q. T., Shinde, D., & Huang, C. H. (2006). Assessment of seasonal variations in surface water quality. Water Research, 40, 3800–3810.CrossRefGoogle Scholar
  14. Panda, U. C., Sundary, S. K., Rath, P., Nayak, B. B., & Bhatta, D. (2006). Application of factor and cluster analysis for characterization of river and estuarine water system – A case study: Mahanadi River (India). Journal of Hydrology, 331, 434–445.CrossRefGoogle Scholar
  15. PN-EN ISO 5667-3 (2005). Water quality. Part 3: Guidelines for the fixing and treatment of water samples (in Polish).Google Scholar
  16. Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modeling and Assessment, 22, 464–475.Google Scholar
  17. Simeonov, V., Einax, J. W., Stanimirova, I., & Kraft, J. (2002). Environmetric modeling and interpretation of river water monitoring data. Analytical and Bioanalytical Chemistry, 374, 898–905.CrossRefGoogle Scholar
  18. Simeonov, V., Sarbu, C., Massart, D. L., & Tasakovski, S. (2001). Danube river water data modeling by multivariate data analysis. Microchimica Acta, 137, 243–248.CrossRefGoogle Scholar
  19. Simeonov, V., Stefanov, S., & Tasakovski, S. (2000). Environmetrical treatment of water quality survey data from Yantra Rive, Bulgaria. Microchimica Acta, 134, 15–21.CrossRefGoogle Scholar
  20. Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4124.CrossRefGoogle Scholar
  21. Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) – A case study. Water Research, 38, 3980–3992.CrossRefGoogle Scholar
  22. Singh, K. P., Malik, A., & Singh, V. K. (2005a). Chemometric analysis of hydro-chemical data of an alluvial river – A case study. Water, Air and Soil Pollution, 170, 383–404.CrossRefGoogle Scholar
  23. Singh, K. P., Malik, A., & Sinha, S. (2005b). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques– A case study. Analytical Chimica Acta, 538, 355–374.CrossRefGoogle Scholar
  24. Sotelo, F. M., Andrade, J. M., Carlosena, A., & Tauler, R. (2007). Temporal characterization of river waters in urban and semi-urban areas using physico-chemical parameters and chemometrics methods. Analytical Chimica Acta, 583, 128–137.CrossRefGoogle Scholar
  25. Sundaray, S. K., Panda, U. C., Nayak, B. B., & Bhatta, D. (2006). Multivariate statistical techniques for the evaluation of the Mahanadi river-estuarine system (India) – A case study. Environmental Geochemistry and Health, 28, 317–330.CrossRefGoogle Scholar
  26. Tarrado, M., Barcelo, D., & Tauler, R. (2006). Identification and distribution of contamination sources in the Erbo river basin by chemometrics modeling coupled to geographical information systems. Talanta, 70, 691–704.CrossRefGoogle Scholar
  27. Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581–3592.CrossRefGoogle Scholar
  28. Zeilhofer, P., Lima, E. B. N. R., & Lima, G. A. R. (2006). Spatial patterns of water quality in the Cuiaba river basin, Central Brazil. Environmental Monitoring and Assessment, 123, 41–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • M. Sojka
    • 1
  • M. Siepak
    • 2
    Email author
  • A. Zioła
    • 3
  • M. Frankowski
    • 3
  • S. Murat-Błażejewska
    • 1
  • J. Siepak
    • 3
  1. 1.Subdepartament of Hydrology and Water ResourcesAugust Cieszkowski Agricultural UniversityPoznańPoland
  2. 2.Department of Hydrogeology and Water ProtectionAdam Mickiewicz UniversityPoznańPoland
  3. 3.Department of Water and Soil AnalysisAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations