Environmental Monitoring and Assessment

, Volume 147, Issue 1, pp 159–170

Application of multivariate statistical techniques to evaluation of water quality in the Mała Wełna River (Western Poland)

  • M. Sojka
  • M. Siepak
  • A. Zioła
  • M. Frankowski
  • S. Murat-Błażejewska
  • J. Siepak
Article

DOI: 10.1007/s10661-007-0107-3

Cite this article as:
Sojka, M., Siepak, M., Zioła, A. et al. Environ Monit Assess (2008) 147: 159. doi:10.1007/s10661-007-0107-3

Abstract

The paper presents the results of determinations of physico-chemical parameters of the Mała Wełna waters, a river situated in Wielkopolska voivodeship (Western Poland). Samples for the physico-chemical analysis were taken in eight gauging cross-sections once a month between May and November 2006. To assess the physico-chemical composition of surface water, use was made of multivariate statistical methods of data analysis, viz. cluster analysis (CA), factor analysis (FA), principal components analysis (PCA), and discriminant analysis (DA). They made it possible to observe similarities and differences in the physico-chemical composition of water in the gauging cross-sections, to identify water quality indicators suitable for characterising its temporal and spatial variability, to uncover hidden factors accounting for the structure of the data, and to assess the impact of man-made sources of water pollution.

Keywords

Mała Wełna river Agricultural catchment Environmental monitoring Water quality Multivariate statistical techniques 

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • M. Sojka
    • 1
  • M. Siepak
    • 2
  • A. Zioła
    • 3
  • M. Frankowski
    • 3
  • S. Murat-Błażejewska
    • 1
  • J. Siepak
    • 3
  1. 1.Subdepartament of Hydrology and Water ResourcesAugust Cieszkowski Agricultural UniversityPoznańPoland
  2. 2.Department of Hydrogeology and Water ProtectionAdam Mickiewicz UniversityPoznańPoland
  3. 3.Department of Water and Soil AnalysisAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations