Environmental Monitoring and Assessment

, Volume 133, Issue 1–3, pp 335–345 | Cite as

Water level management and contaminant exposure to tree swallows nesting on the Upper Mississippi River

  • Thomas W. Custer
  • Paul M. Dummer
  • Christine M. Custer
  • Azusa U. Li
  • David Warburton
  • Mark J. Melancon
  • David J. Hoffman
  • Cole W. Matson
  • John W. Bickham
Article

Abstract

The U.S. Army Corps of Engineers conducted a water drawdown on Navigation Pool 8 of the Upper Mississippi River during the summers of 2001 and 2002 to increase aquatic vegetation production and thereby improve fish and wildlife habitat. Flooding of previously dried wetlands, however, may increase the rate of mercury methylation and make mercury more available to terrestrial vertebrates that feed in aquatic environments. Our objective was to determine if mercury, other elements, and organochlorine contaminants were more available to vertebrates following the 2001 drawdown. Tree swallow (Tachycineta bicolor) eggs and nestlings were collected at two sites on Pool 8 and a nearby Reference site in 2000 (pre-2001 drawdown), 2001 (pre-2001 drawdown) and 2002 (post-2001 drawdown) and tissues were analyzed for mercury, other elements, and organochlorine contaminants. Bioindicator measurements of genetic damage, oxidative stress, ethoxyresorufin-O-dealkylase activity, and the ratio of liver to nestling mass were also measured in nestlings at all sites and all years. Based on a multivariate analysis, the 2001 drawdown of Pool 8 did not influence element concentrations, organochlorine concentrations, or bioindicator response. Concentrations of inorganic and organochlorine contaminants in tree swallow eggs and nestlings were not at toxic levels. Hatching success did not differ among years and was comparable to the nationwide average.

Keywords

Organochlorines Elements Mercury Tree swallows Mississippi River 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous (1993). Report of the AMVA panel on euthanasia. Journal of the American Medical Association, 202, 229–249.Google Scholar
  2. Bickham, J. W. (1990). Flow cytometry as a technique to monitor the effects of environmental genotoxins on wildlife populations. In S. S. Sandhu, W. R. Lower, F. J. de Serres, W. A. Suk, & R. R. Tice (Eds.), In situ evaluations of biological hazards of environmental pollutants (pp. 97–108). New York: Plenum.Google Scholar
  3. Bickham, J. W. (1994). Genotoxic responses in blood detected by cytogenetic and cytometric assays. In M. C. Fossi & C. Leonzio (Eds.), Nondestructive biomarkers in vertebrates (pp. 141–152). Boca Raton, FL: Lewis.Google Scholar
  4. Bishop, C. A., Koster, M. D., Chek, A. A., Hussell, D. J. T., & Jock, K. (1995). Chlorinated hydrocarbons and mercury in sediments, red-winged blackbirds (Agelaius phoeniceus) and tree swallows (Tachycineta bicolor) from wetlands in the Great Lakes – St. Lawrence River basin. Environmental Toxicology and Chemistry, 14, 491–501.CrossRefGoogle Scholar
  5. Blancher, P. J., & McNicol, D. K. (1991). Tree swallow diet in relation to wetland acidity. Canadian Journal of Zoology 69, 2629–2637.CrossRefGoogle Scholar
  6. Burke, M. D., & Mayer, R. T. (1983). Differential effects of phenobarbitone and 3-methylcholanthrene induction on the hepatic microsomal metabolism and cytochrome P-450-binding of phenoxazone and a homologous series of its n-alkyl ethers (alkoxyresorufins). Chemico-Biological Interactions, 45, 243–258.CrossRefGoogle Scholar
  7. Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: An approach to statistical analysis and interpretation (2nd ed.). Plymouth, UK: Plymouth Marine Laboratories.Google Scholar
  8. Custer, C. M., Custer, T. W., Allen, P. D., Stromborg, K. L., & Melancon, M. L. (1998). Reproduction and environmental contamination in tree swallows nesting in the Fox River and Green Bay, Wisconsin, USA. Environmental Toxicology and Chemistry, 17, 1786–1798.CrossRefGoogle Scholar
  9. Custer, C. M., Custer, T. W., Archuleta, A. S., Coppock, L. C., Swartz, C. D., & Bickham, J. W. (2003a). A mining impacted stream: Exposure and effects of lead and other trace elements on tree swallows (Tachycineta bicolor) nesting in the upper Arkansas River basin, Colorado. In Hoffman et al. (Eds.), Handbook of ecotoxicology, vol. 2 (pp. 787–812). Boca Raton, FL: Lewis.Google Scholar
  10. Custer, T. W., Custer, C. M., Dickerson, K., Allen, K., Melancon, M. J., & Schmidt, L. J. (2001). Polycyclic aromatic hydrocarbons, aliphatic hydrocarbons, trace elements and monooxygenase activity in birds nesting on the North Platte River, Casper, Wyoming, USA. Environmental Toxicology and Chemistry, 20, 624–631.CrossRefGoogle Scholar
  11. Custer, C. M., Custer, T. W., Dummer, P. M., & Munney, K. L. (2003b). Exposure and effects of chemical contamination on tree swallows nesting along the Housatonic River, Berkshire County, Massachusetts, USA, 1998–2000. Environmental Toxicology and Chemistry, 22, 1605–1621.CrossRefGoogle Scholar
  12. Custer, C. M., Custer, T. W., Rosiu, C. J., Melancon, M. J., Bickham, J. W., Matson, C. W. (2005). Exposure and effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in tree swallows (Tachycineta bicolor) nesting along the Woonasquatucket River, Rhode Island. Environmental Toxicology and Chemistry, 24, 93–109.CrossRefGoogle Scholar
  13. Custer, T. W., Hines, R. K., Melancon, M. J., Hoffman, D. J., Wickliffe, J. K., Bickham, J. W., et al. (1997). Contaminant concentrations and biomarker response in great blue heron eggs from 10 colonies on the upper Mississippi River, USA. Environmental Toxicology and Chemistry, 16, 260–271.CrossRefGoogle Scholar
  14. DeWeese, L. R., Cohen, R. R., & Stafford, C. J. (1985). Organochlorine residues and eggshell measurements for tree swallows Tachycineta bicolor in Colorado. Bulletin of Environmental Contamination and Toxicology, 35, 767–775.CrossRefGoogle Scholar
  15. Elliott, J. E., Martin, P. A., Arnold, T. W., & Sinclair, P. H. (1994). Organochlorines and reproductive success of birds in orchard and non-orchard areas of central British Columbia, Canada, 1990–91. Archives of Environmental Contamination and Toxicology, 26, 435–443.CrossRefGoogle Scholar
  16. Fairchild, W. L., Muir, D. C. G., Currie, R. S., & Yarechewski, A. L. (1992). Emerging insects as a biotic pathway for movement of 2,3,7,8-tetrachlorodibenzofuran from lake sediments. Environmental Toxicology and Chemistry, 11, 867–872.CrossRefGoogle Scholar
  17. Gasaway, W. C., & Buss, I. O. (1972). Zinc toxicity in the mallard duck. Journal of Wildlife Management, 36, 1107–1117.CrossRefGoogle Scholar
  18. Gerrard, P. M., & St. Louis, V. L. (2001). The effects of experimental reservoir creation on the bioaccumulation of methylmercury and reproductive success of tree swallows (Tachycineta bicolor). Environmental Science & Technology, 35, 1329–1338.CrossRefGoogle Scholar
  19. Hensler, G. L., & Nichols, J. D. (1981). The Mayfield method of estimating nesting success: A model, estimators and simulation results. Wilson Bulletin, 93, 42–53.Google Scholar
  20. Hoffman, D. J., & Heinz, G. H. (1998). Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks. Environmental Toxicology and Chemistry, 17, 161–166.CrossRefGoogle Scholar
  21. King, K. A., Custer, T. W., & Weaver, D. A. (1994). Reproductive success of barn swallows nesting near a selenium-contaminated lake in east Texas, USA. Environmental Pollution, 84, 53–58.CrossRefGoogle Scholar
  22. Kraus, M. L. (1989). Bioaccumulation of heavy metals in pre-fledgling tree swallows, Tachycineta bicolor. Bulletin of Environmental Contamination and Toxicology, 43, 407–414.CrossRefGoogle Scholar
  23. Mayfield, H. (1961). Nesting success calculated from exposure. Wilson Bulletin, 73, 255–261.Google Scholar
  24. Mayfield, H. (1975). Suggestions for calculating nest success. Wilson Bulletin, 87, 456–466.Google Scholar
  25. Melancon, M. J. (1996). Development of cytochromes P450 in avian species as a biomarker for environmental contaminant exposure and effect. Procedures and baseline values. In D. A. Bengston, & D. S. Henshel (Eds.), Environmental toxicology and risk assessment: Biomarkers and risk Assessment, vol. 5 ASTM STP 1306 (pp. 95–108). Philadelphia, PA: American Society for Testing and Materials.Google Scholar
  26. Mengelkoch, J. M., Niemi, G. J., & Regal, R. R. (2004). Diet of the nestling tree swallow. Condor, 106, 423–429.CrossRefGoogle Scholar
  27. Quinney, T. E., & Ankney, C. D. (1985). Prey size selection by tree swallows. Auk, 102, 245–250.Google Scholar
  28. Robertson, R. J., Stutchbury, B. J., & Cohen, R. R. (1992). Tree swallow (Tachycineta bicolor). In: A. Poole, P. Stettenheim, & F. Gill (Eds.), The birds of North America, No. 11 (p. 26). Philadelphia, PA: Academy of Natural Sciences.Google Scholar
  29. Sauer, J. R., & Williams, B. K. (1989). General procedures for testing hypotheses about survival or recovery rates. Journal of wildlife management, 53, 137–142.CrossRefGoogle Scholar
  30. Shaw, G. C. (1983). Organochlorine pesticide and PCB residues in eggs and nestlings of tree swallows, Tachycineta bicolor, in central Alberta. Canadian Field-Naturalist, 98, 258–260.Google Scholar
  31. Smits, J. E., Wayland, M. E., Miller, M. J., Liber, K., & Trudeau, S. (2000). Reproductive, immune, and physiological end points in tree swallows on reclaimed oil sands mine sites. Environmental Toxicology and Chemistry, 19, 2951–2960.CrossRefGoogle Scholar
  32. Thompson, D. R. (1996). Mercury in birds and terrestrial mammals. In W. M. Beyer, G. H. Heinz, & A. W. Redmon-Norwood (Eds.), Environmental contaminants in wildlife. Interpreting tissue concentrations (pp. 341–356). Boca Raton, FL: Lewis.Google Scholar
  33. US Department of the Interior (1998). Guidelines for interpretation of the biological effects of selected contaminants in biota, water, and sediment, National Irrigation Water Quality Program Information Report 3, Denver, CO.Google Scholar
  34. U.S. Geological Survey (1995). Contaminants in the Mississippi River, 1987–92. In R. H. Meade (Ed.), U.S. Geological Survey Circular 1133, 140pp.Google Scholar
  35. Vindelov L. L., & Christensen, I. J. (1994). Detergent and proteolytic enzyme-based techniques for nuclear isolation and DNA content analysis. In Z. Darzynkiewicz, J. P. Robinson, & H. A. Crissman (Eds.), Flow cytometry: Methods in cell biology (2nd ed.) (pp. 219–229). New York: Academic. Part A.Google Scholar
  36. Wiener, J. G., Jackson, G. A., May, T. W., & Cole, B. P. (1984). Longitudinal distribution of trace elements (As, Cd, Cr, Hg, Pb, and Se) in fishes and sediments in the Upper Mississippi River. In J. G. Wiener, R. V. Anderson, & D. R. McConville (Eds.), Contaminants in the Upper Mississippi River. Proceedings of the 15th Annual Meeting of the Mississippi River Research Consortium (pp. 139–170). Stoneham, MA: Butterworth.Google Scholar
  37. Wiener, J. G., Krabbenhoft, D. F., Heinz, G. F., & Scheuhammer, A. M. (2003). Ecotoxicology of mercury. In D. J. Hoffman, B. A. Rattner, G. A. Burton Jr., & J. Cairns Jr. (Eds.), Handbook of ecotoxicology, vol. 2 (pp. 409–463). Boca Raton, FL: Lewis.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Thomas W. Custer
    • 1
  • Paul M. Dummer
    • 1
  • Christine M. Custer
    • 1
  • Azusa U. Li
    • 1
  • David Warburton
    • 2
  • Mark J. Melancon
    • 3
  • David J. Hoffman
    • 3
  • Cole W. Matson
    • 4
  • John W. Bickham
    • 4
  1. 1.US Geological Survey, Upper Midwest Environmental Sciences CenterLa CrosseUSA
  2. 2.US Fish and Wildlife ServiceBloomingtonUSA
  3. 3.US Geological Survey, Patuxent Wildlife Research CenterLaurelUSA
  4. 4.Department of Wildlife and FisheriesTexas A&M UniversityCollege StationUSA

Personalised recommendations