Advertisement

Ozone effects on three Sambucus species

  • I. Cano
  • V. CalatayudEmail author
  • J. Cerveró
  • M. J. Sanz
Article

Abstract

The onset and development of symptoms of three Sambucus species, S. ebulus, S. nigra and S. racemosa were studied in 2002 under three different experimental conditions, in charcoal filtered air (CF), and in two ozone enriched treatment: non filtered air plus 40 ppb ozone (NF+), and non filtered air plus 70 ppb ozone (NF++). The herb S. ebulus was more sensitive than the shrubs S. racemosa and S. nigra. Some plants of the three species showed visible injury below the AOT40 threshold of 10,000 ppb·h, established for protection of vegetation. Ozone produced a decrease in chlorophyll content in S. ebulus, and impaired both stomatal conductance and net photosynthesis in S. ebulus and S. nigra. A complementary study in 2004 with S. ebulus, confirmed a decrease in chlorophyll content after fumigation, associated to a decrease in N content of the leaves. Since S. ebulus is a widespread species in Europe and it is very sensitive to ozone, it could be a very appropriate plant for the biomonitoring studies across large areas in this continent.

Keywords

Chlorophyll content Oxidative stress Ozone Photosynthesis Visible injury 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, T. R., Allen, H. L., Schoeneberger, M. M., & Kress, L. W. (1994). Nutritional response of loblolly pine exposed to ozone and simulated acid rain. Canadian Journal of Forest Research, 24, 453–461.Google Scholar
  2. Bussotti, F., & Gerosa, G. (2002). Are the mediterranean forests in Southern Europe threatened from ozone? Journal of Mediterranean Ecology, 3, 23–34.Google Scholar
  3. Bussotti, F., Schaub, M., Cozzi, A., Kräuchi, N., Ferretti, M., Novak, N., et al. (2003). Assessment of ozone visible symptoms in the field: Perspectives of quality control. Environmental Pollution, 125, 81–89.CrossRefGoogle Scholar
  4. Chappelka, A. H., & Chevone, B. I. (1992). Tree responses to ozone. In A. S. Lefohn (Ed.), Surface-level ozone exposures and their effects on vegetation (pp. 271–324). Chelsea, MI: Lewis.Google Scholar
  5. Fuhrer, J., Skarby, L., & Ashmore, M. R. (1997). Critical levels for ozone effects on vegetation in Europe. Environmental Pollution, 97, 91–106.CrossRefGoogle Scholar
  6. Grove, A., & Mohanty, P. (1992). Leaf senescence-induced alterations in structure and function of higher plant chloroplasts. In Y. P. Abrol, P. Mohanty, & E. Grovindjee (Eds.), Photosynthesis: Photoreactions to plant productivity (pp. 225–255). The Netherlands: Kluwer.Google Scholar
  7. Grulke, N. E., & Paoletti, E. (2005). A field system to deliver desired O3 concentrations in leaf-level gas exchange measurements: Results for Holm Oak near a CO2 spring. Phyton, 45(1), 21–31.Google Scholar
  8. Innes, J. L., Skelly, J. M., & Schaub, M. (2001). Ozone and broadleaved species. A guide to the identification of ozone-induced foliar injury. [Ozon, Laubholz- und Krautpflanzen. Ein Führer zum Bestimmen von Ozonsymptomen]. Haupt, Bern, Stuttgart, Wien, 136 pp.Google Scholar
  9. Kangasjärvi, J., Talvinen, J., Utriainen, M., & Karjalainen, R. (1994). Plant defense systems induced by ozone: Commissioned review. Plant, Cell and Environment, 17, 783–794.CrossRefGoogle Scholar
  10. Kersteins, G., & Lendzian, K. J. (1989). Interactions between ozone and plant cuticules 1. Ozone deposition and permeability. New Phytologist, 112, 13–19.CrossRefGoogle Scholar
  11. Krupa, S., & Manning, W. J. (1988). Atmospheric ozone: Formation and effects on vegetation. Environmental Pollution, 50, 101–137.CrossRefGoogle Scholar
  12. Lee, D. W., O’Keefe, J., Holbrook, N. M., & Feild, T. S. (2003). Pigment dynamics and autumn leaf senescence in a New England deciduous forests, Eastern USA. Ecological Research, 18, 677–694.CrossRefGoogle Scholar
  13. Lindroth, R. L., Kopper, B. J., Parsons, W. F., Bockheim, J. G., Karnosky, D. F., Hendrey, G. R., et al. (2001). Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environmental Pollution, 115, 395–404.CrossRefGoogle Scholar
  14. López-González, A. (2001). Los Árboles y Arbustos de la Península Ibérica e Islas Baleares. Ediciones Mundi Prensa, Madrid, Barcelona, Mexico, 1727 pp.Google Scholar
  15. Lorenz, M., Becher, G., Mues, V., Fischer, R., Ulrich, E., Dobbertin, M., et al. (2004). Forest condition in Europe. 2004. Technical report, BHF, UNECE, Geneva, 95 pp.Google Scholar
  16. Manes, F., Vitale, M., Donato, E., & Paoletti, E. (1998). O3 and O3+CO2 Effects on a mediterranean evergreen broadleaf tree, Holm Oak (Quercus ilex L.). Chemosphere, 36, 801–806.CrossRefGoogle Scholar
  17. Millan, M. M., Mantilla, E., Salvador, R., Carratala, A., Sanz, M. J., Alonso, L., et al. (2000). Ozone cycles in the Western Mediterranenean Basin: Interpretation of monitoring data in complex coastal terrain. Journal of Applied Meteorology, 39, 487–508.CrossRefGoogle Scholar
  18. Nali, C., Paoletti, E., Marabottini, R., Della Rocca, G., Lorenzini, G., Paolacci, A. R., et al. (2004). Ecophysiological and biochemical strategies of response to ozone in Mediterranean evergreen broadleaf species. Atmospheric Environment, 38, 2247–2257.CrossRefGoogle Scholar
  19. Novak, K., Skelly, J. M., Schaub, M., Kräuchi, N., Hug, C., Landolt, W., et al. (2003). Ozone air pollution and foliar injury development on native plants of Switzerland. Environmental Pollution, 125, 41–52.CrossRefGoogle Scholar
  20. Orendovici, T., Skelly, J. M., Ferdinand, J. A., Savage, J. E., Sanz, M. J., & Smith, G. C. (2003). Response of native plants of Northeastern United States and Southern Spain to ozone exposures; determining exposure/response relationships. Environmental Pollution, 125, 31–40.CrossRefGoogle Scholar
  21. Pleijel, H., Skärby, L., Ojanperä, K., & Selldén, G. (1994). Exposure of oats, Avena sativa L. to filtered and unfiltered air in open-top chambers: Effects on grain yield and quality. Environmental Pollution, 86, 129–134.CrossRefGoogle Scholar
  22. Reich, P. B. (1987). Quantifying plant response to ozone: A unifying theory. Tree Physiology, 3, 63–91.Google Scholar
  23. Reich, P. B., & Amudson, R. G. (1985). Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science, 230, 566–570.CrossRefGoogle Scholar
  24. Reichenauer, T. G., & Bolhàr-Nordenkampf, H. R. (1999). Mechanisms of impairment of the photosynthetic apparatus in intact leaves by ozone. Zeitschrift für Naturforschung, 54c, 824–829.Google Scholar
  25. Reig-Armiñana, J., Calatayud, V., Cerveró, J., García-Breijo, F. J., Ibars, A., & Sanz, M. J. (2004). Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscus L.). Environmental Pollution, 132, 321–331.CrossRefGoogle Scholar
  26. Saitanis, C. J., Riga-Karandinos, A. N., & Karandinos, M. G. (2001). Effects of ozone on chlorophyll and quantum yield of tobacco (Nicotiana tabacum L.) varieties. Chemosphere, 42, 909–917.CrossRefGoogle Scholar
  27. Samuelson, L. J., Kelly, J. M., Mays, P. A., & Edwards, G. S. (1996). Growth and nutrition of Quercus rubra L. seedlings and mature trees after three seasons of ozone exposure. Environmental Pollution, 91, 317–323.CrossRefGoogle Scholar
  28. Sanz, M. J. (1991). Efectos de la Contaminación Atmosférica sobre bioindicadores liquénicos y forófitos. Análisis de métodos para su cuantificación. Comarca de Els Ports. Ph.D. thesis, Department of Botany, University of Valencia, 135 pp.Google Scholar
  29. Sanz, M. J. (1996). La salud del agrosistema. La contaminación atmosférica en la cuenca mediterránea: el ozono. Comunitat Valenciana Agraria, 6, 47–55Google Scholar
  30. Sanz, M. J., Calatayud, V., & Calvo, E. (2000). Spatial pattern of ozone injury in Aleppo pine related to air pollution dynamics in a coastal-mountain region of Eastern Spain. Environmental Pollution, 108, 239–247.CrossRefGoogle Scholar
  31. Sanz, M. J., Calatayud, V., & Cerveró, J. (2004). Visible injury in native vegetation as a tool for detecting ozone in rural areas in Spain. In A. Klumpp, W. Ansel, & G. Klumpp (Eds.), Urban air pollution, bioindication and environmental awareness (pp. 147–156). Göttingen: Cuvillier Verlang.Google Scholar
  32. Sanz, M. J., Krause, G., Calatayud, V., & de Vries, W. (2003). Ozone exposure and ozone injury symptoms at intensive monitoring plots: Results from test phase 2001. In Intensive monitoring of forest ecosystems in Europe, Technical report 2003, EC-UN/ECE, Brussels, Geneva (pp. 25–36).Google Scholar
  33. Sanz, M. J., Sánchez, G., Calatayud, V., Minaya, M. T., & Cerveró, J. (2001). La Contaminación Atmosférica en los Bosques. Guía para la Identificación de Daños Visibles Causados por Ozono (p. 163). Madrid: Organismo Autónomo de Parques Nacionales.Google Scholar
  34. Schier, G. A. (1990). Response of yellow-poplar (Liriodendron tulipifera L.) seedlings to simulated acid rain and ozone: II. Effect on throughfall chemistry and nutrients in the leaves. Environmental and Experimental Botany, 30, 325–331.CrossRefGoogle Scholar
  35. Skelly, J. M., Innes, J. L., Savage, J. E., Snyder, K. R., Vanderheyden, D., Zhang, J., et al. (1999). Observation and confirmation of foliar ozone symptoms of native plant species of Switzerland and Southern Spain. Water, Air, and Soil Pollution, 116, 227–234.CrossRefGoogle Scholar
  36. Temple, P. J., & Riechers, G. H. (1995). Nitrogen allocation in ponderosa pine seedlings exposed to interacting ozone and drought stresses. New Phytologist, 130, 97–104.CrossRefGoogle Scholar
  37. VanderHeyden, D., Skelly, J., Innes, J., Hug, C., Zhang, J., Landolt, W., et al. (2001). Ozone exposure thresholds and foliar injury on forest plants in Switzerland. Environmental Pollution, 111, 321–331.CrossRefGoogle Scholar
  38. Whoolhouse, H. W. (1984). The biochemistry and regulation of senescence in chloroplasts. Canadian Journal of Botany, 62, 2934–2943.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • I. Cano
    • 1
  • V. Calatayud
    • 1
    Email author
  • J. Cerveró
    • 1
  • M. J. Sanz
    • 1
  1. 1.Fundación C.E.A.M.ValenciaSpain

Personalised recommendations