Environmental Monitoring and Assessment

, Volume 128, Issue 1–3, pp 121–131 | Cite as

Are Nitrogen-Fertilized Forest Soils Sinks or Sources of Carbon?

  • Helga Van Miegroet
  • Robert JandlEmail author


We developed a simple conceptual model that tracks nitrogen and carbon jointly through an N fertilized forest ecosystem. The stimulation of growth increases the litterfall and imports substrate for soil microorganisms. Microbial biomass forms according to the supply of C and N. The formation of microbial biomass is accompanied by respiratory C losses. The quantity of CO2 efflux depends on the C use efficiency of microbes. When excess N is available, the microbial activity is accelerated and the demand for substrate is high. Litterfall supplies an insufficient amount of C to the soil. In such a case, labile soil C is mineralized and the net effect of N fertilization is a loss of soil C. A strong N fertilization effect on the aboveground biomass can offset the soil C loss. In the case of a low N dosage or high N losses due to leaching or emission of nitrogen oxides, the soil C loss is small. The conceptual model was applied to a case study. The field data, collected over a time span of several decades, could not support sound conclusions on the temporal trend of soil C because the spatial and temporal variability of the chemical data was high. The conceptual model allowed to give an evaluation of the fertilization effect on soil C based on reproducible principles.


Forest soil Conceptual model C sequestration N fertilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J. D., McDowell, W., Nadelhoffer, K. J., Magill, A., Berntson, G., Kamakea, M., et al. (1998). Nitrogen saturation in northern forest ecosystems: Hypothesis revisited. BioScience, 48, 921–934.CrossRefGoogle Scholar
  2. Aber, J. D., & Melillo, J. M. (1991). Terrestrial ecosystems. Philadelphia: Saunders.Google Scholar
  3. Assman, E. (1961). Waldertragskunde—Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. Munich: BLV Verlagsgesellschaft.Google Scholar
  4. Barrett, J. E., Johnson, D. W., & Burke, I. C. (2002). Abiotic nitrogen uptake in semi-arid soils of the U.S. Great Plains. Soil Science Society of America Journal, 66, 979–987.CrossRefGoogle Scholar
  5. Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon losses from soils across England and Wales 1978–2003. Nature, 437, 245–248.CrossRefGoogle Scholar
  6. Berntson, G. M., & Aber, J. D. (2000). Fast nitrate immobilization in N saturated temperate forest soils. Soil Biology and Biochemistry, 32, 151–156.CrossRefGoogle Scholar
  7. Bingeman, C. W., Varner, J. E., & Martin, W. P. (1953). The effect of the addition of organic materials on the decomposition of an organic soil. Soil Science Society America Proceedings, 17, 34–38.CrossRefGoogle Scholar
  8. Brown, S. (2002). Measuring carbon in forests: Current status and future challenges. Environmental Pollution, 116, 363–372.CrossRefGoogle Scholar
  9. Brumme, R., & Beese, F. (1992). Effects of liming and nitrogen fertilization on emissions of CO2 and NO from a temperate forest. Journal of Geophysical Research, 97, 12851–12858.Google Scholar
  10. Canary, J. D., Harrison, R. B., Compton, J. E., & Chappell, H. N. (2000). Additional carbon sequestration following repeated urea fertilization of second-growth Douglas-fir stands in western Washington. Forest Ecology and Management, 138, 225–232.CrossRefGoogle Scholar
  11. Chen, W., Chen, J. M., Price, D. T., Cihlar, J., & Liu, J. (2000). Carbon offset potentials of four alternative forest management strategies in Canada: A simulation study. Mitigation and Adaptation Strategies for Global Change, 5, 143–169.CrossRefGoogle Scholar
  12. Dail, D. B., Davidson, E. A., & Chorover, J. (2001). Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry, 54, 131–146.CrossRefGoogle Scholar
  13. Davidson, E. A., Savage, K., Bolstad, P., Clark, D. A., Curtis, P. S., Ellsworth, D. S., et al. (2002). Belowground C allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology, 113, 39–51.CrossRefGoogle Scholar
  14. Del Giorgio, P. A., & Cole, J. J. (1998). Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics, 29, 501–541.CrossRefGoogle Scholar
  15. Erisman, J. W., & de Vries, W. (2000). Nitrogen deposition and effects on European forests. Environmental Reviews, 8, 65–93.CrossRefGoogle Scholar
  16. Giardina, C. P., & Ryan, M. G. (2002). Total belowground carbon allocation in a fast-growing eucalyptus plantation estimated using a carbon balance approach. Ecosystems, 5, 487–499.CrossRefGoogle Scholar
  17. Hagedorn, F., Maurer, S., Bucher, J. B., & Siegwolf, R. T. W. (2005). Immobilization, stabilization and remobilization of nitrogen in forest soils at elevated CO2: A 15N and 13C tracer study. Global Change Biology, 11, 1816–1827.CrossRefGoogle Scholar
  18. Harrison, R., Prietzel, J., & Jandl, R. (2005). Nutritional management of coniferous forests. In F. A. Andersson (Ed.), Coniferous forests (pp. 485–501). Wageningen: Elsevier.Google Scholar
  19. Hart, S. C., Nason, G. E., Myrold, D. D., & Perry, D. A. (1994). Dynamics of gross nitrogen transformations in an old-growth forest: The carbon connection. Ecology, 75, 880–891.CrossRefGoogle Scholar
  20. Högberg, P., Nordgren, A., Buchmann, N., Taylor, A. F. S., Ekblad, A., Högberg, M., et al. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789–792.CrossRefGoogle Scholar
  21. Insam, H., & Palojärvi, A. (1995). Effects of forest fertilization on nitrogen leaching and soil microbial properties in the Northern calcareous Alps of Austria. Plant and Soil, 168–169, 75–81.CrossRefGoogle Scholar
  22. Jacobson, S., Kukkola, M., Mälkönen, E., & Tveite, B. (2000). Impact of whole-tree harvesting and compensatory fertilization on growth of coniferous thinning stands. Forest Ecology and Management, 129, 41–51.CrossRefGoogle Scholar
  23. Jandl, R., Kopeszki, H., Bruckner, A., & Hager, H. (2003). Forest soil chemistry and mesofauna 20 years after an amelioration fertilization. Restoration Ecology, 11, 239–246.CrossRefGoogle Scholar
  24. Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., et al. How strongly can forest management affect soil C sequestration? Manuscript submitted for publication.Google Scholar
  25. Johann, K. (2000). Ergebnisse von Düngungsversuchen nach 30 Jahren ertragskundlicher Beobachtung. Berichte der FBVA, 114, 1–93.Google Scholar
  26. Johnson, D. W., Cheng, W., & Burke, I. C. (2000). Biotic and abiotic nitrogen retention in a variety of forest soils. Soil Science Society of America Journal, 64, 1503–1514.CrossRefGoogle Scholar
  27. Katzensteiner, K. (2003). Effects of harvesting on nutrient leaching in a Norway spruce (Picea abies) ecosystem on a lithic leptosol in the northern limestone Alps. Plant and Soil, 250, 59–73.CrossRefGoogle Scholar
  28. Kaye, J. P., & Hart, S. C. (1997). Competition for nitrogen between plants and soil microorganisms. Tree, 12, 139–143.Google Scholar
  29. Korsaeth, A., Molstad, L., & Bakken, L. R. (2001). Modelling the competition for nitrogen between plants and microflora as a function of soil heterogeneity. Soil Biology and Biochemistry, 33, 215–226.CrossRefGoogle Scholar
  30. Kulmatiski, A., & Beard, K. H. (2004). Reducing sampling error in soil research. Soil Biology and Biochemistry, 36, 383–385.CrossRefGoogle Scholar
  31. Kuzyakov, Y., Friedel, J. K., & Stahr, K. (2000). Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry, 32, 1485–1498.CrossRefGoogle Scholar
  32. Lundström, U., Bain, D. C., Taylor, A. F. S., & van Hees, P. A. W. (2003). Effects of acidification and its mitigation with lime and wood ash on forest soil processes: A review. Water Air and Soil Pollution Focus, 3, 5–28.CrossRefGoogle Scholar
  33. Mund, M. (2004). Carbon pools of European beech forests (Fagus sylvatica) under different silvicultural management. Forschungszentrum Waldökosysteme der Universität Göttingen, Reihe A, Band 189.Google Scholar
  34. Nadelhoffer, K. J., Aber, J. D., & Melillo, J. M. (1985). Fine roots, net primary production, and soil nitrogen availability: A new hypothesis. Ecology, 66, 1377–1390.CrossRefGoogle Scholar
  35. Österreichische Holzhandelsusancen (1973). Verlag der Wiener Börsenkammer. Auflage 1985.Google Scholar
  36. Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plain grasslands. Soil Science Society America Journal, 51, 1173–1179.CrossRefGoogle Scholar
  37. Paul, E. A., Morris, S. J., & Böhm, S. (2001). The determination of soil C pool sizes and turnover rates: Biophysical fractionation and tracers. In R. Lal (Ed.), Assessment methods for soil C pools (pp. 193–206). Boca Raton: CRC/Lewis.Google Scholar
  38. Pendall, E., Bridgham, S., Hanson, P. J., Hungate, B., Kicklighter, D. W., Johnson, D. W., et al. (2004). Below-ground process responses to elevated CO2 and temperature: A discussion of observations, measurement methods, and models. New Phytologist, 162, 311–322.CrossRefGoogle Scholar
  39. Pingoud, K., Perälä, K. L., & Pussinen, A. (2001). Carbon dynamics in wood products. Mitigation and Adaptation Strategies for Global Change, 6, 91–111.CrossRefGoogle Scholar
  40. Rehfuess, K.-E. (1981). Waldböden—Entwicklung, Eigenschaften und Nutzung. Hamburg: Paul Parey.Google Scholar
  41. Ryan, M. G., & Law, B. E. (2005). Interpreting, measuring, and modeling soil respiration. Biogeochemistry, 73, 3–27.CrossRefGoogle Scholar
  42. Spiecker, H., Mielikäinen, M., Köhl, M., & Skovsgaard, J. P. (1996). Growth trends in Europe—Studies from 12 countries. In H. Spiecker, et al. (Eds.), Growth trends in European forests (pp. 275–289). EFI research report 5. Heidelberg: Springer.Google Scholar
  43. Stober, C., George, G., & Persson, H. (2000). Root growth and response to nitrogen. In E.-D. Schulze (Ed.), Carbon and nitrogen cycling in European forest ecosystems (pp. 99–121). Ecological studies 142. Berlin: Springer.Google Scholar
  44. Strohschneider, I. (1991). Mittelfristige Veränderungen des Bodenzustandes auf Exaktdüngungsversuchsflächen der FBVA (Vols. 1–2). Mitteilungen der Forstlichen Bundesversuchsanstalt, 167.Google Scholar
  45. Trumbore, S. E., & Gaudinski, J. B. (2003). The secret live of roots. Science, 302, 1344–1345.CrossRefGoogle Scholar
  46. Vogt, K. A., Vogt, D. J., Palmiotto, P. A., Boon, P., O’Hara, J., & Asbjornsen, H. (1996). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 187, 159–219.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Wildland ResourcesUtah State UniversityLoganUSA
  2. 2.Federal Office and Training Center for Forests, Natural Hazards and Landscape (BFW)ViennaAustria

Personalised recommendations