Environmental Monitoring and Assessment

, Volume 126, Issue 1–3, pp 105–115 | Cite as

Mercury Contamination of Biota from Acadia National Park, Maine: A Review

  • Michael S. Bank
  • John R. Burgess
  • David C. Evers
  • Cynthia S. Loftin
Original Article

Abstract

We reviewed literature reporting both total and methylmercury from biota from Acadia National Park, Maine, USA. Our review of existing data indicates that 1) mercury contamination is widespread throughout the Park’s various aquatic ecosystems; 2) mercury pollution likely represents a moderate to high risk to biota inhabiting the Park; and 3) biota at all trophic levels possess elevated concentrations of both total and methylmercury. Watershed fire history and the resulting post-fire forest succession patterns are an important landscape attribute governing mercury cycling at Acadia National Park. Therefore, park service personnel should consider these factors when planning and implementing Hg biomonitoring efforts. Additional baseline funding from the National Park Service for Hg research and biomonitoring will likely be required in order to further evaluate the spatial and temporal patterns of mercury contamination in the park’s biota.

Keywords

Acadia National Park biota contaminants literature review mercury 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bank, M., Loftin, C., & Amirbahman, A. (2004). Mercury bioaccumulation in green frog and bullfrog tadpoles from Acadia National Park, Maine, United States Geological Survey Technical Report.Google Scholar
  2. Bank, M. S., Loftin, C. S., & Jung, R. E. (2005). Mercury bioaccumulation in Northern two-lined salamanders from streams in the Northeastern United States. Ecotoxicology, 14(1–2), 181–191.CrossRefGoogle Scholar
  3. Bonzongo, J., Heim, K., Warwick, J., & Lyons, W. (1996). Mercury levels in surface waters of the Carson River – Lahontan Reservoir System, Nevada: Influence of historic mining activities. Environmental Pollution, 92, 193–201.CrossRefGoogle Scholar
  4. Bowerman, W., Evans, E., Geisy, J., & Postupalsky, S. (1994). Using feathers to assess risk of mercury and selenium to bald eagle reproduction in the Great Lakes region. Archives of Environmental Contamination and Toxicology, 27, 294–298.CrossRefGoogle Scholar
  5. Burgess, J. (1997). Mercury contamination in fishes of Mount Desert Island: A comparative food chain mercury study, Masters thesis, Department of Zoology, University of Maine, Orono, Maine, USA, 58 pp.Google Scholar
  6. Burgess, N., Evers, D., Kaplan, J., Duggan, M., & Kerekes, J. (1998). Mercury and reproductive success of Common Loons breeding in the Maritimes. In Mercury in Atlantic Canada: A progress report (pp. 104–109). Environment Canada – Atlantic Region, Sackville, New Brunswick.Google Scholar
  7. Calhoun, A., Cormier, J., Owen Jr., R., Roman, C., O’Connell, A., & Tiner, R. (1994). The wetlands of Acadia National Park and vicinity, U.S. Fish and Wildlife Service, National Wetlands Inventory, Newton Corner, Massachusetts, 108 pp.Google Scholar
  8. Downs, S., MacLeod, C., & Lester, J. (1998). Mercury in precipitation and its relation to bioaccumulation in fish: A literature review. Water Air and Soil Pollution, 108, 149–187.CrossRefGoogle Scholar
  9. Evans, R., Addison, E., Villeneuve, J., Macdonald, K., & Joachim, D. (1998). An examination of spatial variation in mercury concentrations in otter (Lutra canadensis) in south-central Ontario. Science of the Total Environment, 213, 239–245.CrossRefGoogle Scholar
  10. Evans, R., Addison, E. Villeneuve, J., Macdonald, K., & Joachim, D. (2000). Distribution of inorganic and methylmercury among tissues in mink (Mustela vison) and otter (Lutra canadensis). Environmental Research, 84, 133–139.CrossRefGoogle Scholar
  11. Evers, D., Kaplan, J., Meyer, M. W., Reaman, P., Braselton, W., Major, A., et al. (1998). A geographic trend in mercury measured in Common Loon feather and blood. Environmental Toxicology and Chemistry, 17, 173–183.CrossRefGoogle Scholar
  12. Evers, D., Lane, O., & Savoy, L. (2003a). Assessing the impacts of methlymercury on piscivorous wildlife using a wildlife criterion value based on the Common Loon, 1998–2002, Report BRI 2003–09 submitted to the Maine Dept. Environ. Protection, BioDiversity Research Institute, Falmouth, Maine.Google Scholar
  13. Evers, D., Taylor, K., Major, A., Taylor, R., Poppenga, R., & Scheuhammer, A. (2003b). Common Loon eggs as indicators of methylmercury availability in North America. Ecotoxicology, 12, 69–81.CrossRefGoogle Scholar
  14. Fitzgerald, W., Engstrom, D., Mason, R., & Nater, E. (1998). The case for atmospheric mercury contamination in remote areas. Environmental Science and Technology, 32, 1–7.CrossRefGoogle Scholar
  15. Gaines, K., Romanek, C., Boring, C., Lord, C., Gochfield, M., & Burger, J. (2002). Using raccoons as an indicator species for metal accumulation across trophic levels: A stable isotope approach. Journal of Wildlife Management, 66, 811–821.CrossRefGoogle Scholar
  16. Gilmour, C., & Henry, E. (1991). Mercury methylation in aquatic systems affected by acid deposition. Environmental Pollution, 71, 131–169.CrossRefGoogle Scholar
  17. Golet, W., & Haines, T. (2001). Snapping turtles (Chelydra serpentina) as monitors for mercury contamination of aquatic environments. Environmental Monitoring and Assessment, 71, 211–220.CrossRefGoogle Scholar
  18. Hintelmann, H., Harris, R., Heyes, A., Hurley, J., Kelly, C., Krabbenhoft, D., et al. (2002). Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study. Environmental Science and Technology, 36, 5034–5040.CrossRefGoogle Scholar
  19. Jagoe, C. H., Bryan Jr., A., Brant, H., Murphy, T., & Brisbin Jr., I. (2002). Mercury in bald eagle nestlings from South Carolina, USA. Journal of Wildlife Diseases, 38, 706–712.Google Scholar
  20. Johnson, K. B., Haines, T. A., Kahl, J. S., Norton, S. A., Amirbahman, A., & Sheehan, K. D. (2005). Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine. Environmental Monitoring and Assessment, this volume.Google Scholar
  21. Kamman, N., & Engstrom, D. (2002). Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from Pb-dated sediment cores. Atmospheric Environment, 36, 1599–1609.CrossRefGoogle Scholar
  22. Kahl, J. S., Fernandez, I., Manski, D., Haines, T., & Lent, R. (2002). Study of atmospheric deposition effects on surface waters and watershed resources: Paired-gauged watershed research at Acadia National Park, USGS-BRD Technical Report, 13 pp.Google Scholar
  23. Kahl, J. S., Nelson, S., Fernandez, I., Haines, T., Norton, S., Wiersma, G. B., et al. (2005). Streamwater chemistry integrates landscape factors in a paired watershed study at Acadia National Park, Maine, USA. Environmental Monitoring and Assessment, this volume.Google Scholar
  24. Lacerda, L. (1997). Global mercury emissions from gold and silver mining. Water Air and Soil Pollution, 97, 209–221.Google Scholar
  25. Lindqvist, O., Johansson, K., Aastrup, M., Anderson, A., Bringmark, L., Hovsenius, G., et al. (1991). Mercury in the Swedish environment – Recent research on causes, consequences and corrective methods. Water Air and Soil Pollution, 56, 1–261.Google Scholar
  26. Lodenius, M. (1998). Dry and wet deposition of mercury near a chlor-alkali plant. Science of the Total Environment, 213, 53–56.CrossRefGoogle Scholar
  27. Longcore, J. R., Haines, T. A., & Halteman, W. A. (2005). Mercury in tree swallow food, eggs, bodies, and feathers at Acadia National Park, Maine, and an EPA Superfund site, Ayer, Massachusetts. Environmental Monitoring and Assessment, this volume.Google Scholar
  28. Lucotte, M., Schetagne, R., Thérien, N., Langlois, C., Tremblay, A. (Eds.) (1999). Mercury in the Biogeochemical Cycle. Berlin Heidelberg New York: Springer, 334 pp.Google Scholar
  29. Mason, R., Fitzgerald, W., & Morel, F. (1994). The biogeochemical cycle of elemental mercury: Anthropogenic influences. Geochimica et Cosmochimica Acta, 58, 3191–3198.CrossRefGoogle Scholar
  30. Mason, R., & Sullivan, K. (1997). Mercury in Lake Michigan. Environmental Science and Technology, 31, 942–947.CrossRefGoogle Scholar
  31. Meyer, M., Evers, D., Hartigan, J., & Rasmussen, P. (1998). Patterns of Common Loon (Gavia immer) mercury exposure, reproduction, and survival in Wisconsin, USA. Environmental Toxicology and Chemistry, 17, 184–190.CrossRefGoogle Scholar
  32. Mierle, G., Addison, E. M., MacDonald, K., & Joachim, D. (2000). Mercury levels in tissues of otters from Ontario, Canada: Variation with age, sex, and location. Environmental Toxicology and Chemistry, 19, 3044–3051.CrossRefGoogle Scholar
  33. Morel, F., Kraepiel, A., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29, 543–566.CrossRefGoogle Scholar
  34. Nelson, S. J., Johnson, K. B., Kahl, J. S., Haines, T. A., & Fernandez, I. J. (2005). Mass balances of mercury and nitrogen in burned and unburned forested watersheds at Acadia National Park, USA. Environmental Monitoring and Assessment, this volume.Google Scholar
  35. NESCAUM (1998). Northeast states and eastern Canadian provinces: Mercury study: A framework for action. Boston, Massachusetts.Google Scholar
  36. Parkman, H., & Meili, M. (1993). Mercury in macroinvertebrates from Swedish forest lakes: Influence of lake type, habitat, life cycle, and food quality. Canadian Journal of Fisheries and Aquatic Sciences, 50, 521–534.CrossRefGoogle Scholar
  37. Parks, J., & Hamilton, A. (1987). Accelerating recovery of the mercury-contaminated Wabigoon-English River system. Hydrobiologia, 149, 159–188.CrossRefGoogle Scholar
  38. Petranka, J. (1984). Ontogeny of the diet and feeding behavior of Eurycea bislineata larvae. Journal of Herpetology, 18, 48–55.CrossRefGoogle Scholar
  39. Pritchardt, P., Folt, C., Chen, C., Klaue, B., & Blum, J. (2002). Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proceedings of the National Academy of Sciences, 99, 4419–4423.CrossRefGoogle Scholar
  40. Rasmussen, P. (1994). Current methods of estimating atmospheric mercury fluxes in remote areas. Environmental Science and Technology, 28, 2233–2241.CrossRefGoogle Scholar
  41. Richardson, M., Mitchell, M., Coad, S., & Raphael, R. (1995). Exposure to mercury in Canada: A multimedia analysis. Water Air and Soil Pollution, 80, 21–30.CrossRefGoogle Scholar
  42. Stafford, C., & Haines, T. (1997). Mercury concentrations in Maine sport fishes. Transactions of the American Fisheries Society, 126, 144–152.CrossRefGoogle Scholar
  43. St. Louis, V., Rudd, J., Kelly, C., Beaty, K., Flett, R., & Roulet, N. (1996). Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands. Environmental Science and Technology, 30, 2719–2729.CrossRefGoogle Scholar
  44. Stebbins, R., & Cohen, N. (1995). A natural history of amphibians. Princeton, New Jersey: Princeton University Press, 332 pp.Google Scholar
  45. Swain, E., Engstrom, D., Brigham, M., Henning, T., & Brezonik, P. (1992). Increasing rates of atmospheric mercury deposition in midcontinental North America. Science, 257, 784–787.CrossRefGoogle Scholar
  46. Thompson, D. (1996). Mercury in birds and terrestrial animals. In W. Beyer, G. Heinz, & A. Redmon-Norwood (Eds.), Environmental contaminants in wildlife: Interpreting tissue concentrations (pp. 341–355). Boca Raton, Florida: Lewis.Google Scholar
  47. Tremblay, A., & Lucotte, M. (1997). Accumulation of total mercury and methylmercury in insect larvae of hydroelectric reservoirs. Canadian Journal of Fisheries and Aquatic Scieices, 54, 832–841.CrossRefGoogle Scholar
  48. Tremblay, A., Lucotte, M., & Rheault, I. (1996). Methylmercury in a benthic food web of two hydroelectric reservoirs and a natural lake of northern Quebec (Canada). Water Air and Soil Pollution, 91, 255–269.CrossRefGoogle Scholar
  49. USEPA (1997). Mercury study report to Congress. Volume VII: Characterization of human health and wildlife risks from mercury exposure in the United States, EPA Technical Report – 452/R-009.Google Scholar
  50. Watras, C., Back, R., Halvorsen, S., Hudson, R., Morrison, K., & Wente, S. (1998). Bioaccumulation of mercury in pelagic freshwater food webs. Science of the Total Environment, 219, 183–208.CrossRefGoogle Scholar
  51. Watras, C., & Bloom, N. (1992). Mercury and methylmercury in individual zooplankton: Implications for bioaccumulation. Limnology and Oceanography, 37, 1313–1318.CrossRefGoogle Scholar
  52. Watras, C., & Huckabee, J. (Eds.) (1994). Mercury pollution integration and synthesis. Boca Raton, Florida: Lewis, 752 pp.Google Scholar
  53. Wayne, D., Warwick, J., Lechler, P., Gill, G., & Lyons, W. (1996). Mercury contamination in the Carson River, Nevada. A preliminary study of the impacts of mining wastes. Water Air and Soil Pollution, 92, 391–408.Google Scholar
  54. Webber, H. M., & Haines, T. (2003). Mercury effects on predator avoidance behavior of a forage fish, golden shiner (Notemigonus crysoleucas). Environmental Toxicology and Chemistry, 22, 1556–1561.CrossRefGoogle Scholar
  55. Welch, L. (1994). Contaminant burdens and reproductive rates of bald eagles breeding in Maine. Masters thesis, Department of Wildlife Ecology, University of Maine. 86 pp.Google Scholar
  56. Weiner, J., Krabbenhoft, D., Heinz, G., & Scheuhammer, A. (2003). Ecotoxicology of mercury. In D. Hoffman, B. Rattner, G. Burton Jr., & J. Cairns (Eds.), Handbook of ecotoxicology, 2nd ed. (pp. 1312). Boca Raton, Florida, CRC.Google Scholar
  57. Wood, P., White, J., Steffer, A., Wood, J., Facemire, C., & Percival, H. (1996). Mercury concentrations in tissues of bald eagles. Journal of Wildlife Management, 60, 178–185.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Michael S. Bank
    • 1
    • 2
  • John R. Burgess
    • 1
  • David C. Evers
    • 3
  • Cynthia S. Loftin
    • 4
  1. 1.Department of Biological SciencesUniversity of MaineOronoUSA
  2. 2.Department of Environmental HealthHarvard School of Public HealthBostonUSA
  3. 3.BioDiversity Research InstituteGorhamUSA
  4. 4.U.S. Geological Survey, Biological Resources Division, Maine Cooperative Fish and Wildlife Research UnitUniversity of MaineOronoUSA

Personalised recommendations