Advertisement

Environmental Monitoring and Assessment

, Volume 127, Issue 1–3, pp 47–54 | Cite as

Monitoring Pollution in River MureŞ, Romania, Part III: biochemical effect markers in fish and integrative reflection

  • Heinz-R. KöhlerEmail author
  • Cristina Sandu
  • Volker Scheil
  • Erika M. Nagy-Petrică
  • Helmut Segner
  • Ilie Telcean
  • Gheorghe Stan
  • Rita Triebskorn
Original Article

Abstract

Along a downstream stretch of River Mureş, Romania, adult males of two feral fish species, European chub (Leuciscus cephalus) and sneep (Chondrostoma nasus) were sampled at four sites with different levels of contamination. Fish were analysed for the biochemical markers hsp70 (in liver and gills) and hepatic EROD activity, as well as several biometrical parameters (age, length, wet weight, condition factor). None of the biochemical markers correlated with any biometrical parameter, thus biomarker reactions were related to site-specific criteria. While the hepatic hsp70 level did not differ among the sites, significant elevation of the hsp70 level in the gills revealed proteotoxic damage in chub at the most upstream site, where we recorded the highest heavy metal contamination of the investigated stretch, and in both chub and sneep at the site right downstream of the city of Arad. In both species, significantly elevated hepatic EROD activity downstream of Arad indicated that fish from these sites are also exposed to organic chemicals. The results were indicative of impaired fish health at least at three of the four investigated sites. The approach to relate biomarker responses to analytical data on pollution was shown to fit well the recent EU demands on further enhanced efforts in the monitoring of Romanian water quality.

Keywords

Biomarker Chub Cytochrome P450 Danube tributary Hsp70 Monitoring Sneep 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, S.M. (2002). Biological indicators of aquatic ecosystem stress. Bethesda MD, USA: American Fisheries Society, 644 pp.Google Scholar
  2. 2.
    Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  3. 3.
    Burke, M.D., & Mayer, R.T. (1974). Ethoxyresorufin: direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthreneDrug Metabolism and Disposition, 2, 583–588.Google Scholar
  4. 4.
    Burkhardt-Holm, P., & Bloesch, J. (2000). Fish as bioindicators for pollutants in the Danube River: an approach. International Association for Danube Research, 33, 375–382Google Scholar
  5. 5.
    Collier, T.K., Johnson, L.L., Stehr, C.M., Myers, M.S., & Stein, J.E. (1998). A comprehensive assessment of the impacts of contaminants on fish from an urban waterway. Marine Environmental Research, 46, 243–247.CrossRefGoogle Scholar
  6. 6.
    European Commission (2005). Romania 2005 Comprehensive Monitoring Report, Technical Report, [COM (2005) 534 final], Oct 25, 2005; SEC (2005) 1354, Brussels, Belgium, 102 pp.Google Scholar
  7. 7.
    Fulton, T. (1902). Rate of growth of seas fishes. Sci. Invest. Fish. Div. Scot. Rept. 20.Google Scholar
  8. 8.
    Hodson, P.V. (2002). Biomarkers and bioindicators in monitoring and assessment: the state of the art. In: Adams, S. M. (ed), Biological indicators of aquatic ecosystem stress. Bethesda MD, USA: American Fisheries Society, pp. 591– 619.Google Scholar
  9. 9.
    Jaric, D., & Stepic, S. (2005). Differences in enzymes (biomarkers) activities in fish after cage exposure in Drava and Danube Rivers (Croatia). Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie, 29, 873–876.Google Scholar
  10. 10.
    Kammenga, J.E., Dallinger, R., Donker, M.H., Köhler, H.-R., Simonsen, V., Triebskorn, R., et al. (2000). Biomarkers in terrestrial invertebrates: Potential and limitations for ecotoxicological soil risk assessment. Reviews of Environmental Contamination and Toxicology, 164, 93–147.Google Scholar
  11. 11.
    Köhler, H.-R., Bartussek, C., Eckwert, H., Farian, K., Gränzer, S., Knigge, T., & Kunz, N. (2001). The hepatic stress protein (hsp70) response to interacting abiotic parameters in fish exposed to various levels of pollution. J. Aquat. Ecosyst. Stress and Recovery, 8, 261–279.CrossRefGoogle Scholar
  12. 12.
    Köhler, H.-R., Alberti, G., Seniczak, S., & Seniczak, A. (2005). Lead-induced hsp70 and hsp60 pattern transformation and leg malformation during post-embryonic development in the oribatid mite, Archegozetes longisetosus Aoki. Comparative Biochemistry and Physiology - Comp, 141, 398–405.Google Scholar
  13. 13.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–75.Google Scholar
  14. 14.
    Mallat, J. (1985). Fish gill structural changes induced by toxicants and other irritants: A statistical review. Canadian Journal of Fisheries and Aquatic Sciences, 42, 630–648.CrossRefGoogle Scholar
  15. 15.
    Navas, J.M., Chana, A., Herradon, B., & Segner, H. (2003). Induction of CYP1A by the N-imidazole derivative, 1-benzylimidazole. Environmental Toxicology and Chemistry, 22, 830–836.CrossRefGoogle Scholar
  16. 16.
    Reichert, W.L., Myers, M.S., Peck-Miller, K., French, B., Anulacion, B.F., Collier, T.K., et al. (1998). Molecular epizootiology of genotoxic events in marine fish: linking contaminant exposure, DNA damage, and tissue-level alterations. Mutation Research, 411, 215–225.CrossRefGoogle Scholar
  17. 17.
    Sandu, C., Farkas, A., Musa-Iacob, R., Ionica, D., Parpala, L., Zinevici, V. et al. (2006). Monitoring pollution in River Mureĉ, Romania, part I: how aquatic communities are affected, this issue.Google Scholar
  18. 18.
    Schlenk, D., & Di Giulio, R.T. (2002). Biochemical responses as indicators of aquatic ecosystem health. In: Adams, S.M. (ed), Biological indicators of aquatic ecosystem stress. Bethesda MD, USA: American Fisheries Society, pp. 13–42.Google Scholar
  19. 19.
    Schramm, M., Behrens, A., Braunbeck, T., Eckwert, H., Köhler, H.-R., Konradt, J., et al. (1999). Cellular, histological and biochemical biomarkers. In: Gerhardt, A. (ed), Biomonitoring of Polluted Water Environmental Research Forum 98. ütikon-Zürich, Switzerland: Trans Tech Publications, pp. 33–64.Google Scholar
  20. 20.
    Stegeman, J.J., Hahn, M.E. (1994). Biochemistry and molecular biology of monooxygenases: current perspectives on form, functions, and regulation of cytochrome P450 in aquatic species. In: Malins, D.C., & Ostrander, C.K. (eds), Aquatic Toxicology. Boca Raton, FL, USA: Lewis, pp. 87–203.Google Scholar
  21. 21.
    Triebskorn, R., Böhmer, J., Braunbeck, T., Honnen, W., Köhler, H.-R., Lehmann, R., et al. (2001). The project VALIMAR (VALIdation of bioMARkers for the assessment of small stream pollution): objectives, experimental design, summary of results, and recommendations for the application of biomarkers in risk assessment. J Aquat Ecosyst Stress Recovery, 8, 161–178.CrossRefGoogle Scholar
  22. 22.
    Triebskorn, R., Telcean, I., Casper, H., Farkas, A., Sandu, C., Stan, G., et al. (2006). Monitoring pollution in River Mureĉ, Romania, part II: metal accumulation and histopathology in fish, this issue.Google Scholar
  23. 23.
    Van Veld, P.A., Vogelbein, W.K., Cochran, M.K., Goksó yr, A., & Stegeman, J.J. (1997). Route-specific cellular expression of cytochrome P4501A (CYP1A) in fish (Fundulus heteroclitus) following exposure to aqueous and dietary benzo(a)pyrene. Toxicology and Applied Pharmacology, 142, 348–359.Google Scholar
  24. 24.
    Whyte, J.J., Jung, R.E., Schmitt, C.J., & Tillit, D.E. (2000). Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Critical Reviews in Toxicology, 30, 347–570.CrossRefGoogle Scholar
  25. 25.
    Yoder, C.O., & Rankin, E.T. (1998). The role of biological indicators in a state water quality management process. Environmental Monitoring and Assessment, 51, 61–88.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Heinz-R. Köhler
    • 1
    Email author
  • Cristina Sandu
    • 2
  • Volker Scheil
    • 1
  • Erika M. Nagy-Petrică
    • 3
    • 4
  • Helmut Segner
    • 5
  • Ilie Telcean
    • 6
  • Gheorghe Stan
    • 7
    • 8
  • Rita Triebskorn
    • 9
    • 10
  1. 1.Animal Physiological EcologyUniversity of TübingenTübingenGermany
  2. 2.Institute of BiologyRomanian AcademyBucharestRomania
  3. 3.Animal Physiological EcologyUniversity of TübingenTübingenGermany
  4. 4.Biological FacultyWestern University ‘Vasile Goldiş’AradRomania
  5. 5.Center for Fish and Wildlife HealthUniversity of BerneBerneSwitzerland
  6. 6.Department of BiologyUniversity of OradeaOradeaRomania
  7. 7.Biological FacultyWestern University ‘Vasile Goldiş’AradRomania
  8. 8.Department of Life and Earth SciencesBabes-Bolyai UniversityCluj-NapocaRomania
  9. 9.Animal Physiological EcologyUniversity of TübingenTübingenGermany
  10. 10.Steinbeis-Transfer Center for Ecotoxicology and EcophysiologyRottenburgGermany

Personalised recommendations