Environmental Monitoring and Assessment

, Volume 124, Issue 1–3, pp 131–139

Measurement Of Nutrients In Green House Soil With Laser Induced Breakdown Spectroscopy

  • T. Hussain
  • M. A. Gondal
  • Z. H. Yamani
  • M. A. Baig
Original Article

Abstract

Laser-induced breakdown spectroscopy (LIBS) has been applied for the determination of nutrients in the green house soil samples. We determined appropriate spectral signatures of vital nutrients and calibrated the method to measure the nutrients in a naturally fertilized plot, cultivated with tomato and cucumber plants. From the calibration curves we predicted the concentrations of important nutrients such as Ca, K, P, Mg, Fe, S, Ni and Ba in the soil. Our measurements proved that the LIBS method rapidly and efficiently measures soil nutrients with excellent detection limits of 12, 9, 7, 9, 7, 10, 8 and 12~mg/kg for Ca, K, P, Mg, Fe, S, Ni and Ba respectively with a precision of 2%, The unique features of LIBS for rapid sample analysis demonstrated by this study suggests that this method offers promise for precision measurements of soil nutrients as compared to conventional methods in short span of time.

Keywords

Laser-induced break down spectroscopy (LIBS) Continuous emissions monitoring Nutrients and soil Trace metals detection LIBS applications Analysis of soil sample 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdellatif, G., & Imam, H. (2002). A study of laser plasma parameters at different laser wavelength, Spectrochim. Acta Part B, 57, 1155–1165.CrossRefGoogle Scholar
  2. Adrain, R.S. & Watson, J. (1984). Laser microspectral analysis: A review of principles and applications. Appl. Phys. 17, 1915–1940.Google Scholar
  3. Body, D. & Chadwick, B.L. (2001). Simultaneous elemental analysis system using Laser induced breakdown spectroscopy. Review of Scientific Instruments, 72, 1625–1629.CrossRefGoogle Scholar
  4. Bolger, J.A. (2000). Semi quantitative laser induced breakdown spectroscopy for analysis of mineral drill core. Applied Spectroscopy, 54, 181–189.CrossRefGoogle Scholar
  5. Cremers, D.A, Barefield, J.E., & Koskelo, A.C. (1996). Remote elemental analysis by laser–-induced breakdown spectroscopy using a fiber-Ooptic cable. Applied Specification, 49, 857–860.CrossRefGoogle Scholar
  6. Cremers, D.A., Ferris M.J., & Davies, M. (1996). Transportable laser-induced breakdown spectroscopy (LIBS) instrument for field-based soil analysis. Proceedings of the Social Photo Optics Instrument Engineering, 2835, 190–200.Google Scholar
  7. Gondal, M.A. (1997). Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants. Applied Optics, 36, 3195–3201.Google Scholar
  8. Gondal, M.A. & Mastromarino, J. (2000). LIDAR system for environmental studies. Talanta, 53, 147–154.CrossRefGoogle Scholar
  9. Gondal, M.A., & Mastromarino, J. (2001). Pulsed laser photoacoustic detection of SO2 near 225.7 nm. Applied Optics, 40, 2010–2016.Google Scholar
  10. Gondal, M.A., Baig, M.A., & Shwehdi, M.H. (2002). Laser sensor for detection of leaks in high power insulated switch gear systems. IEEE Transations Dielectrical and Electrical Insullation, 9, 421–427.CrossRefGoogle Scholar
  11. Gondal, M.A., Mastromarino, J., & Klein, U.K.A. (2002). Laser Doppler velocimeter for remote measurements of pollutant water and aerosols discharges. Optics and Lasers in Engineering, 38, 589–600.CrossRefGoogle Scholar
  12. Gondal, M.A., Shwehdi, M.H., & Dastgeer, A. (2004). Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries. TALANTA, 62, 131–136.CrossRefGoogle Scholar
  13. Lal, R. (1999). Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Programming in Environmental Science, 1, 307–326.Google Scholar
  14. Lee, Y.I., Song, K., Sceddon, J. (1997). Laser induced plasma in analytical atomic spectroscopy, New York: VCH Publishers.Google Scholar
  15. Leon, J., Radziemski. (2002). From laser to LIBS, the path of technology development. Spectrochim. Acta Part B, 57, 1109–1113.CrossRefGoogle Scholar
  16. McCarty, G.W., & Reeves J.B. III (2001). Development of rapid instrumental methods for measuring soil organic carbon. In R. Lal et al. (ed.). Assessment methods for soil carbon (pp. 371–380). Boca Raton, Flourida: Lewis Publisher.Google Scholar
  17. Parton, W.J., Schimel, D.S, Cole, C.V., & Ojima, D.S. (1987). Analysis of factors controlling soil organic matter levels in great plains gross lands. Soil Science Society of American Journal, 51, 1173–1179.CrossRefGoogle Scholar
  18. Paul, E.A., Morris, S.J., & Böhm, S. (2001). The determination of soil C Pool Sizes and turnover rates: Biophysical fractionation and tracers. In R. Lal et al. (ed.). Assessment methods for soil carbon (pp. 193–206). Boca Raton, Flourida: Lewis Publishers.Google Scholar
  19. Paustian, K., Parton, W.J., & Perason, J. (1992). Modeling soil organic matter in organic-amended and nitrogen fertilized long term plots. Soil Science Society of American Journal, 56, 476–488.CrossRefGoogle Scholar
  20. Radziemski, L.J., & Cremers, D.A. (1989), Spectrochemical analysis using laser plasma excitation. In Radziemski, L. J., & Cremers, D. A. (ed.). Applications of laser-induced plasmas (pp. 295–325). New York: Marcel Dekker.Google Scholar
  21. Reid, K.D. (1997). Runoff and sediment yield in a semiarid piñon–juniper woodland, New Mexico. M.S. Thesis. Department of Earth Resource, Colorado State Univ., Ft. Collins.Google Scholar
  22. Sjostrom & Mauchien P. (1991). Laser atomic spectroscopic technique-The analytical performance for trace element analysis of solid and liquid samples. Spectrachimica Acta B, 15, 153–180.Google Scholar
  23. Song, K., Lee, Y.I., & Sneddon, J. (1997). Applications of laser induced breakdown emission spectroscopy. Applied Spectroscopic Review, 32, 187–191.Google Scholar
  24. Yamamoto, K.Y., Cremers, D.A., Ferris, M.J., & Foster, L.E. (1996). Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument. Applied Spectroscopy, 50, 222–233.CrossRefGoogle Scholar
  25. Zhaang, H., Yueh, F., & Singh, J.P. (2000). LIBS as a multimetal continuous emission monitor. Applied Optics, 38, 1459–1466.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • T. Hussain
    • 1
  • M. A. Gondal
    • 2
  • Z. H. Yamani
    • 2
  • M. A. Baig
    • 1
  1. 1.Institute of Environmental Science & EngineeringNational University of Sciences and Technology (NUST)RawalpindiPakistan
  2. 2.Laser Research LaboratoryPhysics Department King Fahd University of Petroleum &,Minerals Box 372DhahranSaudi Arabia

Personalised recommendations