Environmental Monitoring and Assessment

, Volume 116, Issue 1–3, pp 459–479 | Cite as

Development and Applications of Microbial Ecogenomic Indicators for Monitoring Water Quality: Report of a Workshop Assessing the State of the Science, Research Needs and Future Directions

  • Richard DevereuxEmail author
  • Parke Rublee
  • John H. Paul
  • Katharine G. Field
  • Jorge W. Santo Domingo


This article brings forth recommendations from a workshop sponsored by the U.S. Environmental Protection Agency's Science to Achieve Results (STAR) and Environmental Monitoring and Assessment (EMAP) Programs and by the Council of State Governments, held during May 2002 in Kansas City, Kansas. The workshop assembled microbial ecologists and environmental scientists to determine what research and science is needed to bring existing molecular biological approaches and newer technologies arising from microbial genomic research into environmental monitoring and water quality assessments. Development of genomics and proteomics technologies for environmental science is a very new area having potential to improve environmental water quality assessments. The workshop participants noted that microbial ecologists are already using molecular biological methods well suited for monitoring and water quality assessments and anticipate that genomics-enabled technologies could be made available for monitoring within a decade. Recommendations arising from the workshop include needs for (i) identification of informative microbial gene sequences, (ii) improved understandings of linkages between indicator taxa, gene expression and environmental condition, (iii) technological advancements towards field application, and (iv) development of the appropriate databases.


ecogenomics genomics microbiology proteomics source tracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamczyk, J., Hesselsoe, M., Iversen, N., Horn, M., Lehner, A., Nielsen, P. H., Schloter, M., Roslev, P. and Wagner, M.: 2003, ‘The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function’, Appl. Environ. Microbiol. 69, 6875–6887.CrossRefGoogle Scholar
  2. Amann, R. I., Ludwig, W. and Schleifer, K. H.: 1995, ‘Phylogenetic identification and in situ detection of individual microbial cells without cultivation’, Microbiol. Rev. 59, 143–169.Google Scholar
  3. Barkay, T., Fouts, D. L. and Olson, B. H.: 1985, ‘Preparation of a DNA gene probe for detection of mercury resistance in Gram-negative bacteria’, Appl. Environ. Microbiol. 49, 1196–1202.Google Scholar
  4. Bavykin, S. G., Akowski, J. P., Zakhariev, V. M., Barsky, V. E., Perov, A. N. and Mirzabekov, A. D.: 2001, ‘Portable system for microbial sample preparation and oligonucleotide microarray analysis’, Appl. Environ. Microbiol. 67, 922–928.CrossRefGoogle Scholar
  5. Beja, O., Suzuki, M. T., Koonin, E. V., Aravind, L., Hadd, A., Nguyen, L. P., Vilacorta, R., Amjadi, M., Garrigues, C., Jovanovich, S. B., Feldman, R. A. and DeLong, E. F.: 2000, ‘Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage’, Environ. Microbiol. 2, 516–529.CrossRefGoogle Scholar
  6. Beja, O., Spudich, E. N., Spudich, J. L., LeClerc, M. and DeLong, E. F.: 2001, ‘Proteorhodopsin phototrophy in the ocean’, Nature 411, 786–789.CrossRefGoogle Scholar
  7. Berggren, C., Stålhandske, P., Brundell, J. and Johansson, G: 1999, ‘A feasibility study of a capacitive biosensor for direct detection of DNA hybridization’, Electroanalysis 11, 156–160.CrossRefGoogle Scholar
  8. Bernhard, A. E. and Field, K. G.: 2000a, ‘Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes’, Appl. Environ. Microbiol. 66, 1587–1594.CrossRefGoogle Scholar
  9. Bernhard, A. E. and Field, K. G.: 2000b, ‘A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA’, Appl. Environ. Microbiol. 66, 4571–4574.CrossRefGoogle Scholar
  10. Chen, F., Gonzalez, J. M., Dustman, W. A., Moran, M. A. and Hodson, R. E.: 1997, ‘In situ reverse transcription, an approach to characterize genetic diversity and activities of prokaryotes’, Appl. Environ. Microbiol. 63, 4907–4913.Google Scholar
  11. Cho, J.-C. and Tiedje, J. M.: 2002, ‘Quantitative detection of microbial genes by using DNA microarrays’, Appl. Environ. Microbiol. 68, 1425–1430.CrossRefGoogle Scholar
  12. Connon, S. A. and Giovannoni, S. J.: 2002, ‘High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates’, Appl. Environ. Microbiol. 68, 3878–3885.CrossRefGoogle Scholar
  13. DeLeon, R., Shieh, Y. S. C., Baric, R. S. and Sobsey, M. D.: 1990, ‘Detection of enteroviruses and hepatitis A virus in environmental samples by gene probes and polymerase chain reaction’, in: Proceeding of the Water Quality Conference, San Diego, CA, American Water Works Association, Vol. 18, Denver, CO., pp. 833–853.Google Scholar
  14. Derisi, J. L., Iyer, V. R. and Brown, P. O.: 1997, ‘Exploring the metabolic and genetic control of gene expression on a genomic scale’, Science 278, 680–686.CrossRefGoogle Scholar
  15. Dick, L. K. and Field, K. G.: 2004, ‘Rapid estimation of numbers of fecal Bacteroidetes by use of a quantitative PCR assay for 16S rRNA genes’, Appl. Environ. Microbiol. 70, 5696–5697.CrossRefGoogle Scholar
  16. Fan, C., Li, G., Gu, Q., Zhu, J. and Zhu, D.: 2000, Electrochemical detection of Cecropin CM4 gene by single stranded probe and cysteine modified gold electrode, Anal. Lett. 33, 1479–1490.Google Scholar
  17. Ferris, M. J. and Ward, D. M.: 1997, ‘Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis’, Appl. Environ. Microbiol. 63, 1375–1381.Google Scholar
  18. Fisher, W. S., Jackson, L. E. and Kurtz, J. C.: 2005, ‘U.S. EPA Office of Research and Development guidelines for technical evaluation of ecological indicators’, in: D. J. Rapport, W.L, Lasley, D. E. Rolston, N. O. Nielsen, C. O. Qualset, A. B. Damania (eds), Managing for Healthy Ecosystems, Lewis CRC Press, Boca Raton, FL, pp. 277–284.Google Scholar
  19. Fox, J. D., Han, S., Samuelson, A., Zhang, Y., Neale, M. L. and Westmoreland, D.: 2002, ‘Development and evaluation of nucleic acid sequence based amplification (NASBA) for diagnosis of enterovirus infections using the NucliSens®, Basic Kit’, J. Clin. Virol. 24, 117–130.CrossRefGoogle Scholar
  20. Fuhrman, J. A., Griffith, J. F. and Schwalbach, M. S.: 2002, ‘Prokaryotic and viral diversity patterns in marine plankton’, Ecol. Res. 17, 183–194.CrossRefGoogle Scholar
  21. Girones, R., Puig, M., Allard, A., Lucena, F., Wadell, G. and Jofre, J.: 1995, ‘Detection of adenovirus and enterovirus by PCR amplification in polluted waters’, Water Sci. Technol. 31, 351–357.CrossRefGoogle Scholar
  22. Griffin, T. J., Goodlett, D. R. and Aebersold, R.: 2001a, ‘Advances in proteome analysis by mass spectrometry’, Curr. Opin. Biotechnol. 12, 607–612.CrossRefGoogle Scholar
  23. Griffin, T. J., Gygi, S. P., Rist, B., Aebersold, R., Loboda, A., Jilkine, A., Ens, W. and Standing, K. G.: 2001b, ‘Quantitative proteomic analysis using a MALDI quadrupole time-of-flight mass spectrometer’, Anal. Chem. 73, 978–986.CrossRefGoogle Scholar
  24. Gruntzig, V., Nold, S. C., Zhou, J. and Tiedje, J. M.: 2001, ‘Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR’, Appl. Environ. Microbiol. 67, 760–768.CrossRefGoogle Scholar
  25. Haugland, R. A., Siefring, S. C., Wymer, L. J., Brenner, K. P. and Dufour, A. P.: 2005, ‘Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis’, Water Res. 39, 559–568.CrossRefGoogle Scholar
  26. Huber, M., Losert, D., Hiller, R., Harwanegg, C., Mueller, M. W. and Schmidt, W. M.: 2001, ‘Detection of single base alterations in genomic DNA by solid phase polymerase chain reaction on oligonucelide microarrays’, Anal. Biochem. 299, 24–30.CrossRefGoogle Scholar
  27. Jiang, M. and Wang, J.: 2001, ‘Recognition and detection of oligonucleotides in the presence of chromosomal DNA based on entrapment within conducting-polymer networks’, J. Electroanal. Chem. 500, 584–589.CrossRefGoogle Scholar
  28. Kerkhof, L., Santoro, M. and Garland, J.: 2000, ‘Response of soybean rhizosphere communities to human hygiene water addition as determined by community level physiological profiling (CLPP) and terminal restriction fragment length polymorphism (TRFLP) analysis’, FEMS Microbiol. Lett. 18, 95–101.Google Scholar
  29. Koizumi, Y., Kelly, J. J., Nakagawa, T., Urakawa, H., El-Fantroussi, S., Al-Muzaini, S., Fukui, M., Urushigawa, Y. and Stahl, D. A.: 2002, ‘Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology’, Appl. Environ. Microbiol. 68, 3215–3225.CrossRefGoogle Scholar
  30. Kozwich, D., Johansen, K. A., Landau, K., Roehl, C. A., Woronoff, S. and Roehl, P. A.: 2000, ‘Development of a novel, rapid integrated Cryptosporidium parvum detection assay’, Appl. Environ. Microbiol. 66, 2711–2717.CrossRefGoogle Scholar
  31. Liu, W.-T., Marsh, T. L., Cheng, H. and Forney, L. J.: 1997, ‘Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA’, Appl. Environ. Microbiol. 63, 4516–4522.Google Scholar
  32. Liu, W. T., Mirzabekov, A. D. and Stahl, D. A.: 2001, ‘Optimization of an oligonucleotide microchip for microbial identification studies: A non-equilibrium dissociation approach’, Environ Microbiol. 3, 619–629.CrossRefGoogle Scholar
  33. Lucchini, S., Thompson, A. and Hinton, J. C.D.: 2001, ‘Microarrays for microbiologists’, Microbiology 147, 1403–1414.Google Scholar
  34. Marrazza, G., Chianell, I. and Mascin, M.: 1999, ‘Disposable DNA electrochemical biosensors for environmental monitoring’, Anal. Chim. Acata. 387, 297–307.CrossRefGoogle Scholar
  35. Marsh, T. L., Saxman, P., Cole, J. and Tiedje, J. M.: 2000, ‘Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis’, Appl. Environ. Microbiol. 66, 3616–3620.CrossRefGoogle Scholar
  36. Morris, R. M., Rappé, M. S., Connon, S. A., Vergin, K. L., Siebold, W. A., Carlson, C. A. and Giovannoni, S. J.: 2002, ‘SAR11 clade dominates ocean surface bacterioplankton communities’, Nature 420, 806–810.CrossRefGoogle Scholar
  37. Moyer, C. L.: 2001, ‘Molecular phylogeny’, in: J. H. Paul (ed.), Marine Microbiology, Meth. Microbiol. 30, 375–394.Google Scholar
  38. Muyzer, G., de Waal, E. C. and Uitterlinden, A. G.: 1993, ‘Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA’, Appl. Environ. Microbiol. 59, 695–700.Google Scholar
  39. National Science and Technology Council: 2001, ‘The Microbe Project: A report from the Interagency Working Group on Microbial Genomics’ ( pdf_files/microbe.pdf).
  40. Ogunseitan, O. A.: 1997, ‘Direct extraction of catalytic proteins from natural microbial communities’, J. Microbiol. Meth. 28, 55–63.CrossRefGoogle Scholar
  41. Ogunseitan, O. A.: 2000, ‘Microbial proteins as biomarker of ecosystem health’, in: K. M. Scow, G.E Fogg, D. E. Hinton and M. L. Johnson (eds), Integrated Assessment of Ecosystem Health, CRC Press, Boca Raton, FL, pp. 207–222.Google Scholar
  42. Ogunseitan, O. A., Yang, S. and Ericson, J.: 2000, ‘Microbial δ-aminolevulinate dehydratase as a biosensor of lead bioavailability in contaminated environments’, Soil Biol. Biochem. 32, 1899–1906.CrossRefGoogle Scholar
  43. Olsen, G. J., Lane, D. J., Giovannoni, S. J. and Pace, N. R.: 1986, ‘Microbial ecology and evolution: A ribosomal RNA approach’, Annu. Rev. Microbiol. 40, 337–365.CrossRefGoogle Scholar
  44. Ouverney, C. C. and Fuhrman, J. A.: 2000, ‘Marine planktonic Archaea take up amino acids’, Appl. Environ. Microbiol. 66, 4829–4833.CrossRefGoogle Scholar
  45. Overbeck, J. and Chrost, R.J (eds): 1990. Aquatic Microbial Ecology: Biochemical and Molecular Approaches, Springer-Verlag, New York.Google Scholar
  46. Pace, N. R., Stahl, D. A., Lane, D. J. and Olsen, G. J.: 1986, ‘The analysis of natural microbial populations by ribosomal RNA sequences’, Adv. Microbiol. Ecol. 9, 1–55.Google Scholar
  47. Paul, J. H., Pichard, S. L., Kang, J. B., Watson, G. M. F. and Tabita, F. R.: 1999, ‘Evidence for a clade-specific temporal and spatial separation in ribulose bisphosphate carboxylase gene expression in phytoplankton populations off Cape Hatteras and Bermuda’, Limnol. Oceanogr. 44, 12–23.CrossRefGoogle Scholar
  48. Peplies, J., Lau, S. C. K., Pernthanler, J., Amann, R. I. and Glöckner, F. O.: 2004, ‘Application and validation of DNA microarrays for the 16S rRNA-based analysis of marine bacterioplankton’, Environ. Microbiol. 6, 638–645.CrossRefGoogle Scholar
  49. Pernthaler, A., Pernthaler, J., Shattenhofer, M. and Amann, R. I.: 2002, ‘Identification of DNA-synthesizing bacterial cells in coastal North Sea plankton’, Appl. Environ. Microbiol. 68, 5728–5736.CrossRefGoogle Scholar
  50. Rappé, M. S., Connon, S. A., Vergin, K. L. and Giovannoni, S. J.: 2002, ‘Cultivation of the ubiquitous SAR11 marine bacterioplankton clade’, Nature 418, 630–633.CrossRefGoogle Scholar
  51. Rose, J. B. and Grimes, J. D.: 2001, ‘Revaluation of microbial Water Quality: Powerful New Tools for Detection and Risk Assessment, A report from the American Academy of Microbiology’, American Society for Microbiology, Washington, DC.Google Scholar
  52. Rose, J. B., Zhou, X., Griffin, D. W. and Paul, J. H.: 1997, ‘Comparison of PCR and plaque assay for detection and enumeration of coliphage in polluted marine waters’, Appl. Environ. Microbiol. 63, 4564–4566.Google Scholar
  53. Rudi, K., Skulberg, O. M. and Jakobsen, K. S.: 2000, ‘Application of sequence-specific labeled 16S rRNA gene oligonucleotide probes for genetic profiling of cyanobacterial abundance and diversity by array hybridization’, Appl. Environ. Microbiol. 66, 4004–4011.CrossRefGoogle Scholar
  54. Santo Domingo, J. W., Siefring, S. C. and Haugland, R. A.: 2003, ‘Real-time PCR method to detect Enterococcus faecalis in water’, Biotechnol. Lett. 25, 261–265.CrossRefGoogle Scholar
  55. Schafer, H. and Muyzer, G.: 2001, ‘Denaturing gradient gel electrophoresis in marine microbial ecology’, in: J. H. Paul (ed.), Marine Microbiology, Meth. Microbiol. 30, 425–468.CrossRefGoogle Scholar
  56. Schena, M., Shalon, D., Davis, R. W. and Brown, P. O.: 1995, ‘Quantitative monitoring of gene expression patterns with a complementary DNA microarray’, Science 270, 467–470.Google Scholar
  57. Short, R. T., Fries, D. P., Kerr, M. L., Lembke, C. E., Toler, S. K., Wenner, P. G. and Byrne, R. H.: 2001, ‘Underwater mass spectrometers for in situ chemical analysis of the hydrosphere’, J. Am. Soc. Mass Spectrom. 12, 676–682.CrossRefGoogle Scholar
  58. Small, J., Call, D. R., Brockman, F. J., Straub, T. M. and Chandler, D. P.: 2001, ‘Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays’, Appl. Environ. Microbiol. 67, 4708–4716.CrossRefGoogle Scholar
  59. Stahl, D. A. and Tiedje, J. M.: 2002, ‘Microbial Ecology and Genomics: A Crossroads of Opportunity’, A Report from the American Academy of Microbiology, ASM Press, Washington DC.Google Scholar
  60. Staley, J. T., Castenholtz, R. W., Colwell, R. R., Holt, J. G., Kane, M. D., Pace, N. R., Salyers, A. A. and Tiedje, J. M.: 1997, ‘The Microbial World: Foundation of the Biosphere’, A Report from the American Academy of Microbiology, ASM Press, Washington, DC.Google Scholar
  61. Straub, T. M., Daly, D. S., Wunshel, S., Rochelle, P. A., DeLeon, R. and Chandler, D. P.: 2002, ‘Genotypeing Cryptosporidium parvum with an hsp70 single-nucleotide polymorphism microarray’, Appl. Environ. Microbiol. 68, 1817–1826.CrossRefGoogle Scholar
  62. Suzuki, M. T., Taylor, L. T. and DeLong, E. F.: 2000, ‘Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays’, Appl. Environ. Microbiol. 66, 4605–4614.CrossRefGoogle Scholar
  63. Thompson, D. K., Beliaev, A. S., Giometti, C. S., Tollaksen, S. L., Khare, T., Lies, D. P., Nealson, K. H., Lim, H., Yates III, J., Brandt, C. C., Tiedje, J. M. and Zhou, J.: 2002, ‘Transcriptional and proteomic analysis of a ferric uptake regulator (Fur) mutant of Shewanella oneidensis: Possible involvement of Fur in energy metabolism, transcriptional regulation, and oxidative stress’, Appl. Environ. Microbiol. 68, 881–892.CrossRefGoogle Scholar
  64. United States Environmental Protection Agency: 1990, ‘Biological Criteria: National Program Guidance for Surface Waters’ (EPA-440/5-90-004).Google Scholar
  65. Urakawa, H., Noble, P. A., El Fantroussi, S., Kelly, J. J. and Stahl, D. A.: 2002, ‘Single-base-pair discrimination of terminal mismatches by using oligonucleotide microarrays and neural network analyses’, Appl Environ Microbiol. 68, 235–244.CrossRefGoogle Scholar
  66. Wawrik, B., Paul, J. H. and Tabita, F. R.: 2002, ‘Real-Time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes’, Appl. Environ. Microbiol. 68, 3771–3779.CrossRefGoogle Scholar
  67. Wu, L., Thompson, D. K., Li, G., Hurt, R. A., Tiedje, J. M. and Zhou, J.: 2001, ‘Development and evaluation of functional gene arrays for detection of selected genes in the environment’, Appl. Environ. Microbiol. 67, 5708–5790.Google Scholar
  68. Ye, R. W., Wang, T., Bedzyk, L. and Coker, K. M.: 2001, ‘Applications of DNA microarrays in microbial systems’, J. Microbiol. Meth. 47, 257–272.CrossRefGoogle Scholar
  69. Zehr, J. P. and Turner, P. J.: 2001, ‘Nitrogen fixation: Nitrogenase genes and gene expression’, in: J. H. Paul (ed.), Marine Microbiology, Meth. Microbiol. 30, 271–289.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Richard Devereux
    • 1
    Email author
  • Parke Rublee
    • 2
  • John H. Paul
    • 3
  • Katharine G. Field
    • 4
  • Jorge W. Santo Domingo
    • 5
  1. 1.U.S. Environmental Protection AgencyNational Health and Environmental Effects Research Laboratory, Gulf Ecology DivisionGulf BreezeUSA
  2. 2.Department of BiologyUniversity of North Carolina at GreensboroGreensboroUSA
  3. 3.College of Marine ScienceUniversity of South FloridaSt. PetersburgUSA
  4. 4.Department of MicrobiologyOregon State UniversityCorvallisUSA
  5. 5.U.S. Environmental Protection Agency, National Risk Management Research LaboratoryWater Supply and Water Resources DivisionCincinnatiUSA

Personalised recommendations