Advertisement

Environmental Monitoring and Assessment

, Volume 121, Issue 1–3, pp 213–232 | Cite as

Prediction of Near-Surface Soil Moisture at Large Scale by Digital Terrain Modeling and Neural Networks

Article

Abstract

The capability of Artificial Neural Network models to forecast near-surface soil moisture at fine spatial scale resolution has been tested for a 99.5 ha watershed located in SW Spain using several easy to achieve digital models of topographic and land cover variables as inputs and a series of soil moisture measurements as training data set. The study methods were designed in order to determining the potentials of the neural network model as a tool to gain insight into soil moisture distribution factors and also in order to optimize the data sampling scheme finding the optimum size of the training data set. Results suggest the efficiency of the methods in forecasting soil moisture, as a tool to assess the optimum number of field samples, and the importance of the variables selected in explaining the final map obtained.

Keywords

dehesa topographic variables forecasting soil moisture sampling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertson, J. D. and Kiely, G.: 2001, ‘On the structure of soil moisturetime series in the context of land surface models’, Journal ofHydrology 243(1–2), 101–119.CrossRefGoogle Scholar
  2. B’rdossy, A. and Lehmann, W.: 1998, ‘Spatial Distribution of SoilMoisture in a Small Catchment. Part I: Geostatistical Analysis’, Journalof Hydrology 206, 1–15.CrossRefGoogle Scholar
  3. Beven, K. J. and Kirkby, M. J.: 1979, ‘A physically-based variablecontributing area model of basin hydrology’, Hydrological ScienceBulletin 24(1), 43–69.CrossRefGoogle Scholar
  4. Breshears, D. D. and Barnes, F. J.: 1999, ‘Interrelationships between plantfunctional types and soil moisture heterogeneity for semiarid landscapeswithin the grassland(forest continuum: a unified conceptual model’, Landscape Ecology 14, 465–578.CrossRefGoogle Scholar
  5. Breshears, D. D., Rich, P. M., Barnes, F. J. and Campbel, K.: 1997, ‘Overstory-imposed heterogeneity in solar radiation and soil moisture in a semiaridwoodland’, Ecological Applications 7(4), 1201–1215.CrossRefGoogle Scholar
  6. Brubaker, S. C., Jones, A. J. Frank, K. and Lewis, D. T.: 1994, ‘Regressionmodels for stimating soil properties by landscape position’, SoilScience Society of America Journal 58, 1763–1767.CrossRefGoogle Scholar
  7. Ceballos, A. and Schnabel, S.: 1998, ‘Comportamiento de la humedad del sueloen una pequeña cuenca hidrogr’, fica de la dehesa extremeña(Guadalperalón, C’, ceres)’, Cuadernos de InvestigaciónGeogr’, fica XXIV, 25–38.Google Scholar
  8. Chang, D. and Islam, S.: 2000, ‘Estimation of soil physical properties usingremote sensing and artificial neural network’, Remote Sensing of theEnvironment 74, 534–544.CrossRefGoogle Scholar
  9. Dalton, F. N. and Van Genuchten, M. Th.: 1986, ‘The time domainreflectometry method for measuring soil water content and salinity’, Geoderma 38, 237–250.CrossRefGoogle Scholar
  10. Daniell, T. M.: 1991, ‘Neural networks - Applications in hydrology and waterresources engineering’, Proceedings, International Hydrology and WaterSymposium. Vol. 3 pp.797–802. Nat. Conf. Publ. 91(22, Inst. of Eng., Australia, Barton, ACT, Australia.Google Scholar
  11. Del Frate, F., Ferrazzoli, P. and Schiavon, G.: 2003, ‘Retrieving soilmoisture and agricultural variables by microweave radiometry using neuralnetworks’, Remote Sensing of the Environment 84, 174–183.CrossRefGoogle Scholar
  12. Famiglietti, J. S., Rudnicki, J. W. and Rodell, M.: 1998, ‘Variability insurface moisture content along a hillslope transect: Rattlesnake Hill, Texas’, Journal of Hydrology 210(1–4), 259–281.CrossRefGoogle Scholar
  13. Faucet, L. V.: 1994. Fundamentals of Neural Networks. Architectures, Algorithms and Applications. Prentice Hall. New York.Google Scholar
  14. Feng Qui, Yansui, L. and Masao, M.: 2004, ‘Geostatistical analysis of soilmoisture variability in grassland’, Journal of Arid Environments 58, 357–372.CrossRefGoogle Scholar
  15. Florinsky, I. V., Eilers, R. G., Manning, G. R. and Fuller, L. G.: 2002, ‘Prediction of Soil Properties by Digital Terrain Modelling’, Journal ofEnvironmental Modelling and Software 17, 295–311.CrossRefGoogle Scholar
  16. Gómez-Plaza, A., Martínez-Mena, J., Albadalejo, J. and Castillo, V.M.: 2001, ‘Factors regulating spatial distribution of soil water content insmall semiarid catchments’, Journal of Hydrology 253, 211–226.CrossRefGoogle Scholar
  17. Hongli, J. and William, R. C.: 2004, ‘Soil moisture estimation using anartificial neural network: A feasibility study’, Canadian Journal ofRemote Sensing 30 (5), 827–839.CrossRefGoogle Scholar
  18. Hsu, K.I., Gupta, H. V. and Sorooshian, S.: 1993, ‘Artificial neural networkmodeling of the rainfall-runoff process’, Water Resources Research 29(4), 1185–1194.CrossRefGoogle Scholar
  19. Jacques, D., Mohanty, B., Timmerman, A. and Feyen, J.: 2001, ‘Study of timedependency of factors affecting the spatial distribution of soil watercontent in a field-plot’, Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere 26(7–8), 629–634.CrossRefGoogle Scholar
  20. Jiang, H. and Cotton, W. R.: 2004, ‘Soil moisture estimation using anartificial neural network: a feasibility study’, Canadian Journal ofRemote Sensing 30 (5), 827–839.CrossRefGoogle Scholar
  21. Kao, J. J.: 1996, ‘Neural net for determining DEM-based model drainagepattern’, Journal of Irrigation and Drainage Engineering 122(2), 112–121.CrossRefGoogle Scholar
  22. Kingbiel, A. A., Horvath, E. H., Moore, D. G. and Reybold, W. U.: 1987, ‘Useof slope aspect, and elevation maps derived from digital elevation modeldata in making soil surveys’, in: W.U. Reybold and G.A. Peterson (ed), Soil survey Techniques. SSSA Spec. Pub. 20. SSSA, Madison, WI, P. 77–99.Google Scholar
  23. Knight, H.: 1992, ‘Sensitivity of time domain reflectometry measurements tolateral variations in soil water content’, Water Resources Research 28(9), 2345–2352.CrossRefGoogle Scholar
  24. Kumar, L., Skidmore, A. K. and Knowles, E.: 1997, ‘Modelling topographicvariation in solar radiation in a GIS environment’, InternationalJournal for Geographical Information Science 11(5), 475–497.CrossRefGoogle Scholar
  25. Maier, H. R. and Dandy, G. C.: 1996, ‘The use of artificial neural networksfor the prediction of water quality parameters’, Water ResourcesResearch 32(4), 1013–1022.CrossRefGoogle Scholar
  26. Maneta, M. and Schnabel, S.: 2003, ‘Aplicación de redes neuronalesartificiales para determinar la distribución espacial de la humedad delsuelo en una pequeña cuenca de drenaje. Estudios preliminares’, in J.’lvarez-Benedí and P. Marinero (eds.), VI Jornadas sobreInvestigación en la Zona no Saturada del Suelo. ITA, Valladolid, pp.296–304. (in Spanish)Google Scholar
  27. Pariente, S.: 2002, ‘Spatial patterns of soil moisture as affected byshrubs, in different climatic conditions’, Environmental Monitoring andAssessment 73, 237–251.CrossRefGoogle Scholar
  28. Qiu, Y., Fu, B., Wang, J. and Chen, L.: 2001a, ‘Soil moisture variation inrelation to topography and land use in a hillslope catchment of the LoessPlateau, China’, Journal of Hydrology 240(3–4), 243–263.CrossRefGoogle Scholar
  29. Qiu, Y., Fu, B., Wang, J. and Chen, L.: 2001b, ‘Spatial variability of soilmoisture content and its relation to environmental indices in a semi-aridgully catchment of the Loess Plateau, China’, Journal of AridEnvironments 49(4), 723–750.Google Scholar
  30. Rajkai, K. and Ryden, B. E.: 1992, ‘Measuring areal soil moisturedistribution with the TDR method’, Geoderma 52, 73–85.CrossRefGoogle Scholar
  31. Raman, H. and Sunilkumar, N.: 1995, ‘Multivariate modeling of waterresources time series using artificial neural networks’, HydrologicalSciences Journal 40(2), 145–163.CrossRefGoogle Scholar
  32. Rumelhart, D. E., Hinton, G. E. and Williams, R. J.: 1986, ‘Learninginternal representations by error propagation’, in D. E. Rumelhart y J. L.McClelland (eds), Parallel Distributed Processing, vol 1. MIT Press, Cambridge.Google Scholar
  33. Shamseldin, A. Y.: 1997, ‘Application of a neural network technique torainfall-runoff modeling’, Journal of Hydrology 199(3–4), 272–294CrossRefGoogle Scholar
  34. Shamseldin, A. Y.: 1997, ‘Application of a neural network technique torainfall-runoff modelling’, Journal of Hydrology, 199, 272–294CrossRefGoogle Scholar
  35. Shukla, M. B., Kok, R., Prasher, S. O., Clark, G. and Lacroix, R.: 1996, ‘Use of artificial neural networks in transient drainage design’, Transactions of the ASAE 39(1), 299–306.CrossRefGoogle Scholar
  36. Topp, G. C. and Davis, J. L.: 1985, ‘Measurement of soil water content usingtime domain reflectometry (TDR): A field evaluation’, Soil ScienceSociety of America Journal 49, 19–24.CrossRefGoogle Scholar
  37. Topp, G. C., Davis, J. L. and Annan, A. P.: 1982, ‘Electromagneticdetermination of soil water content using TDR: 1. Applications to wettingfronts and steep gradients’, Soil Science Society of America Journal 46, 672–678.CrossRefGoogle Scholar
  38. Topp, G. C., Davis, J. L. and Annan, P.: 1980, ‘Electromagneticdetermination of soil water content: Measurements in coaxial transmissionlines’, Water Resources Research 16(3), 574–582.CrossRefGoogle Scholar
  39. Twomey, J. M. and Smith, A. E.: 1995, ‘Performance measures, consistency, and power for artificial neural network models’, Mathematical ComputerModelling 21(1–2), 243–258.Google Scholar
  40. Walker, P. H., Hall, F. F., and Protz, R.: 1968, ‘Relation between land-formparameters and soil properties’, Soil Science Society of AmericaProceedings 32, 101–104.CrossRefGoogle Scholar
  41. Weibel, R. and Heller, M.: 1991, ‘Digital terrain modelling’, in D. J.Maguire, M. F. Goodchild y D. Rhind (eds), Geographical InformationSystems: Principles and Applications. Vol 1: Principles. Longman, Harlow, pp. 269–297.Google Scholar
  42. Whalley, W. R.: 1993, ‘Considerations on the use of time domainreflectometry (TDR) for measuring soil water content’, Journal of SoilScience 44, 1–9.Google Scholar
  43. Wigneron, J. P., Calvet, J. C., Pellarin, T., Van de Griend, A. A., Berger, M. and Ferrazzoli, P.: 2003, ‘Retrieving near-surface soil moisture frommicroweave radiometric observations: Current status and future plans’, Remote Sensing of the Environment 85, 489–506.CrossRefGoogle Scholar
  44. Wilson, D. J., Western, A. W., Grayson, R. B., Berg, A. A., Lear, M. S., Rodell, M., Famiglietti, J. S., Woods, R. A. and McMahon, T. A.: 2003, ‘Spatial distribution of soil moisture over 6 and 30 cm depth, Mahurangiriver catchment, New Zealand’, Journal of Hydrology 276(1–4), 254–274.CrossRefGoogle Scholar
  45. Yang, C. C., Prasher, S. O. and Lacroix, R.: 1996a, ‘Application ofartificial neural networks to land drainage engineering’, Transactionsof the ASAE 39(2), 525–533.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • J. F. Lavado Contador
    • 1
  • M. Maneta
    • 1
  • S. Schnabel
    • 1
  1. 1.Department of Geography and Land PlanningUniversity of ExtremaduraCáceresSpain

Personalised recommendations