Environmental Monitoring and Assessment

, Volume 119, Issue 1–3, pp 527–543

Quantifying Carbon Budgets Of Conifer Mediterranean Forest Ecosystems, Turkey

  • Fatih Evrendilek
  • Suha Berberoglu
  • Sibel Taskinsu-Meydan
  • Erhan Yilmaz


Aboveground biomass, aboveground litterfall, and leaf litter decomposition of five indigenous tree stands (pure stands ofPinus brutia,Pinus nigra,Cedrus libani,Juniperus excelsa, and a mixed stand ofAbies cilicica,P. nigra, andC. libani) were measured in an eastern Mediterranean evergreen needleleaf forest of Turkey. Measurements were converted to regional scale estimates of carbon (C) stocks and fluxes of forest ecosystems, based on general non-site-specific allometric relationships. Mean C stock of the conifer forests was estimated as 97.8± 79 Mg C ha−1consisting of 83.0 ± 67 Mg C ha−1in the aboveground and 14.8 ± 12 Mg C ha−1in the belowground biomass. The forest stands had mean soil organic carbon (SOC) and nitrogen (SON) stocks of 172.0 ± 25.7 Mg C ha−1and 9.2 ± 1.2 Mg N ha−1, respectively. Mean total monthly litterfall was 376.2± 191.3 kg C ha−1, ranging from 641 ± 385 kg C ha−1forPinus brutiato 286 ± 82 kg C ha−1forCedrus libani. Decomposition rate constants (k) for pine needles were 0.0016 forCedrus libani, 0.0009 forPinus nigra, 0.0006 for the mixed stand, and 0.0005 day−1forPinus brutiaand Juniperus excelsa. Estimation of components of the C budgets revealed that the forest ecosystems were net C sinks, with a mean sequestration rate of 2.0 ± 1.1 Mg C ha−1 yr−1ranging from 3.2 ± 2 Mg C ha−1forPinus brutiato 1.6 ± 0.6 Mg C ha−1forCedrus libani. Mean net ecosystem productivity (NEP) resulted in sequestration of 98.4 ± 54.1 Gg CO2 yr−1from the atmosphere when extrapolated for the entire study area of 134.2 km2(Gg = 109 g). The quantitative C data from the study revealed the significance of the conifer Mediterranean forests as C sinks


biological production carbon budget conifer mediterranean forests ecosystem carbon exchange Turkey 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amthor, J. S.: 1995, ‘Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle’, Global Change Biol. 1, 243–274.CrossRefGoogle Scholar
  2. Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, Ch., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T. U., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K. and Wofsy, S.: 2001, ‘FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities’, Bull. Am. Meteor. Soc. 82, 2415–2434.CrossRefGoogle Scholar
  3. Bockheim, J. G., Jepsen, A. E. and Heisey, D. M.: 1991, ‘Nutrient dynamics in decomposing leaf litter of four tree species on a sandy soil in northwestern Wisconsin’, Can. J. Forest Res. 21, 803–812.Google Scholar
  4. Brooks, J. R. and Wiant, H. V.: 2004, ‘{A}simple technique for estimating cubic volume yields’, Forest. Ecol. Manage. 203, 373–380.CrossRefGoogle Scholar
  5. Davidson, E. A., Savage, K., Bolstad, P., Clark, D. A., Curtis, P. S., Ellsworth, D. S., Hanson, P. J., Law, B. E., Luo, Y., Pregitzer, K. S., Randolph, J. C. and Zak, D.: 2002, ‘Belowground carbon allocation in forests estimated from litterfall and irga-based soil respiration measurements’, Agric. Forest Meteor. 113, 39–51.CrossRefGoogle Scholar
  6. Davis, P.H.: 1965–1985, Flora of Turkey and the East Aegean Islands, Vol. 1–9, Edinburgh University Press, Edinburgh, UK.Google Scholar
  7. Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C. and Wisniewski, J.: 1994, ‘Carbon pools and flux of global forest ecosystems’, Science 263, 185–190.Google Scholar
  8. Evrendilek, F. and Doygun, H.: 2000, ‘Assessing major ecosystem types and the challenge of sustainability in Turkey’, Environ. Manage. 26, 479–489.CrossRefGoogle Scholar
  9. Evrendilek, F. and Wali, M. K.: 2001, ‘Modelling long-term C dynamics in croplands in the context of climate change: A case study from Ohio’, Environ. Modelling Software 16, 361–375.CrossRefGoogle Scholar
  10. Evrendilek, F. and Wali, M. K.: 2004, ‘Changing global climate: Historical carbon and nitrogen budgets and projected responses of ohio's cropland ecosystems’, Ecosystems 7, 381–392.CrossRefGoogle Scholar
  11. FAO: 1995, Forest Products 1991–1995, Yearbook, Fao Forestry Series No: 30. Fao Statistic Series No: 137. Roma, Italy.Google Scholar
  12. Giardina, C. P., Ryan, M. G., Binkly, D. and Fownes, J. H.: 2003, ‘Primary production and carbon allocation in relation to nutrient supply in an experimental tropical forest’, Global Change Biol. 9, 1438–1450.CrossRefGoogle Scholar
  13. Hollinger, D. Y., Aber, J., Dail, B., Davidson, E. A., Goltz, S. M., Hughes, H., Leclerc, M. Y., Lee, J. T., Richardson, A. D., Rodrigues, C., Scott, N. A., Achuatavarier, D. and Walsh, J.: 2004, ‘Spatial and temporal variability in forest-atmosphere CO2 exchange’, Global Change Biol. 10, 1689–1706.CrossRefGoogle Scholar
  14. IPCC: 1996, Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, UK.Google Scholar
  15. Jenny, H., Gessel, S. P. and Bingham, F. T.: 1949, ‘Comparative study of decomposition of organic matter in temperate and tropical regions’, Soil Sci. 68, 419–432.Google Scholar
  16. Kirschbaum, M. U. F.: 1995, ‘The temperature dependence of soil organic matter decomposition, and the effect on global warming on soil organic C storage’, Soil Biol. Biochem. 27, 753–760.CrossRefGoogle Scholar
  17. Köppen, W.: 1931, Grundriss der Klimakunde, Walter de Gruyter & Co.Google Scholar
  18. Olson, J. S.: 1963, ‘Energy storage and the balance of producers and decomposers in ecological systems’, Ecology 44, 322–331.CrossRefGoogle Scholar
  19. Prince, S. D. and Goward, S. N.: 1995, ‘Global primary production: A remote sensing approach’, J. Biogeography 22, 815–835.CrossRefGoogle Scholar
  20. Raich, J. W. and Nadelhoffer, K. J.: 1989, ‘Belowground carbon allocation in forest ecosystems: Global trends’, Ecology 70, 1346–1354.CrossRefGoogle Scholar
  21. Raich, J. W. and Schlesinger, W. H.: 1992, ‘The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate’, Tellus 44B, 81–99.Google Scholar
  22. Schlesinger, W. H.: 1997, Biogeochemistry: An Analysis of Global Change, Academic Press, NY.Google Scholar
  23. Schowalter, T. D., Hargrove, W. W. and Crossley, Jr., D. A.: 1986, ‘Herbivory in forested ecosystems’, Annu. Rev. Entomol. 31, 177–196.CrossRefGoogle Scholar
  24. Seneviratne, G.: 2000, ‘Litter quality and nitrogen release in tropical agriculture: A synthesis’, Biol. Fertil. Soils 31, 60–64.CrossRefGoogle Scholar
  25. Soil Survey Staff: 1998, Keys to Soil Taxonomy, USDA-NRCS, US Government Printing Office, Washington, DC.Google Scholar
  26. Spurr, S. H.: 1952, Forest Inventory, Ronald Press Co., New York.Google Scholar
  27. Swift, M. J. and Anderson, J. M.: 1989, ‘Decomposition’, in: H. Lieth and M. J. A. Werger (eds), Tropical Rain Forest Ecosystems, Biogeographical and Ecological Studies, Elsevier, Amsterdam.Google Scholar
  28. TSMS (Turkish State Meteorological Service): 2005, Climate Data, 1960–2000, Regional Directorate of State Meteorological Service, Adana.Google Scholar
  29. UNFCCC: 1997, Kyoto Protocol to the United Nation Framework Convention on Climate Change. http://unfccc.int/.Google Scholar
  30. UN-ECE/FAO: 2000, Forest Resources of Europe, Cis, North America, Australia, Japan and New Zealand: Contribution to the Global Forest Resources Assessment 2000, Geneva Timber and Forest Study Papers No: 17, Rome.Google Scholar
  31. Wali, M. K., Evrendilek, F., West, T. O., Watts, S. E., Pant, D., Gibbs, H. K. and Mcclead, B. E.: 1999, ‘Assessing terrestrial ecosystem sustainability: Usefulness of regional carbon and nitrogen models’, Nat. Resour. 35, 21–33.Google Scholar
  32. Walker, B. and Steffen, W.: 1997, ‘An overview of the implications of global change for natural and managed terrestrial ecosystems’, Conserv. Ecol. 1, 1–19.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Fatih Evrendilek
    • 1
  • Suha Berberoglu
    • 2
  • Sibel Taskinsu-Meydan
    • 2
  • Erhan Yilmaz
    • 1
  1. 1.Department of Landscape ArchitectureMustafa Kemal UniversityAntakya-HatayTurkey
  2. 2.Department of Landscape ArchitectureÇukurova UniversityBalcalı-AdanaTurkey

Personalised recommendations