Advertisement

Environmental Monitoring and Assessment

, Volume 111, Issue 1–3, pp 89–112 | Cite as

Air Quality Assessment And Control Of Emission Rates

  • Yuri N. SkibaEmail author
  • David Parra-Guevara
  • Davydova Valentina Belitskaya
Article

Abstract

Mathematical methods based on the adjoint model approach are given for the air-pollution estimation and control in an urban region. A simple advection–diffusion-reaction model and its adjoint are used to illustrate the application of the methods. Dual pollution concentration estimates in ecologically important zones are derived and used to develop two non-optimal strategies and one optimal strategy for controlling the emission rates of enterprises. A linear convex combination of these strategies represents a new sufficient strategy. A method for detecting the enterprises, which violate the emission rates prescribed by a control, is given. A method for determining an optimal position for a new enterprise in the region is also described.

Keywords

adjoint model control and identification of emission rates pollution estimates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cacuci, D.G.: 1981, ‘Sensitivity theory for nonlinear systems. Part I. Nonlinear functional analysis approach’, J. Math. Phys. 22, 2794–2802. Part II. Extensions to additional classes of responses, Ibid, 2803–2812.Google Scholar
  2. Cacuci, D.G., Wever, C.F., Oblow, E.M. and Marable, J.H.: 1980, ‘Sensitivity theory for general systems of nonlinear equations’, Nuclear Sci. Eng. 75, 88–110.Google Scholar
  3. Flagan, R.C. and Seinfeld, J.H.: 1988, Fundamentals of Air Pollution Engineering, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  4. Giering, R.: 2000, ‘Tangent linear and adjoint biogeochemical models’, in: Inverse Methods in Global Biogeochemical Cycles, AGU Geophysical Monograph 114.Google Scholar
  5. Godunov, S.K.: 1971, Equations of Mathematical Physics, Nauka, Moscow (in Russian).Google Scholar
  6. Hall, M.C.G.: 1986, ‘Application of adjoint sensitivity theory to an atmospheric general circulation model’, J. Atmos. Sci. 42, 2644–2651.Google Scholar
  7. Hall, M.C.G. and Cacuci, D.G.: 1983, ‘Physical interpretation of the adjoint functions for sensitivity analysis of atmospheric models’, J. Atmos. Sci. 40, 2537–2546.CrossRefGoogle Scholar
  8. Issartel, J.-P. and Baverel, J.: 2003, ‘Inverse transport for the verification of the Comprehensive Nuclear Test Ban Treaty’, Atmos. Chem. Phys. 3, 475–486.Google Scholar
  9. Kovgar, V.: 1996, ‘The Verification of Air Pollution Episodes in Industrial Regions’, Technical Report, WP-96–121, International Institute for Applied Systems Analysis (IIASA), Laxen-burg, Austria, 24 pp.Google Scholar
  10. Lewins, J.: 1965, Importance, the Adjoint Function, Pergamon Press.Google Scholar
  11. Lewis, J. and Derber, J.C.: 1985, ‘The use of adjoint equations to solve a variational adjustment problem with advective constraints’, Tellus 37A, 309–322.Google Scholar
  12. Luenberger, G.D.: 1989, Linear and Nonlinear Programming, Addison-Wesley, Reading.Google Scholar
  13. Marchuk, G.I.: 1974, Numerical Solutions of the Problem of the Dynamics of the Atmosphere and the Ocean, Gigrometeoizadat, Leningrad (in Russian).Google Scholar
  14. Marchuk, G.I.: 1982, ‘Mathematical issue of industrial effluent optimization’, J. Meteorol. Soc. Jpn. 60, 481–485.Google Scholar
  15. Marchuk, G.I.: 1986, Mathematical Models in Environmental Problems, Elsevier, New York.Google Scholar
  16. Marchuk, G.I.: 1995, Adjoint Equations and Analysis of Complex Systems, Kluwer Academic Publishers, Dordrecht.Google Scholar
  17. Marchuk, G.I. and Orlov, V.V.: 1961, ‘On the theory of adjoint functions’, in: Neutron Physics, Gosatomizdat, Moscow, pp. 30–45 (in Russian).Google Scholar
  18. Marchuk, G.I. and Skiba, Yu.N.: 1976, ‘Numerical calculation of the conjugate problem for a model of the thermal interaction of the atmosphere with the oceans and continents’, Izvestiya, Atmos. Ocean. Phys. 12, 279–284.Google Scholar
  19. Marchuk, G.I., Kuzin, V.I. and Skiba, Yu.N.: 1983, ‘Projection-difference method for calculating the adjoint functions for a model of heat transfer in the atmosphere-ocean-soil system’, in: Actual Problems of Numeric and Applied Mathematics, Nauka, Novosibirsk, pp. 149–154.Google Scholar
  20. Marchuk, G.I., Skiba, Yu.N. and Protsenko, I.G.: 1985a, ‘Method of calculating the evolution of random hydrodynamic fields on the basis of adjoint equations’, Izvestiya, Atmos. Ocean. Phys. 21, 87–92.Google Scholar
  21. Marchuk, G.I., Skiba, Yu.N. and Protsenko, I.G.: 1985b, ‘Application of adjoint equations to problems of estimating the state of random hydrodynamic fields, Izvestiya, Atmos. Ocean. Phys. 21, 175–180.Google Scholar
  22. Marchuk, G.I. and Skiba, Yu.N.: 1990, ‘Role of adjoint functions in studying the sensitivity of a model of the thermal interaction of the atmosphere and ocean to variations in input data’, Izvestiya, Atmos. Ocean. Phys. 26, 335–342.Google Scholar
  23. Marchuk, G.I., Agoshkov, V.I. and Shutyaev, V.P.: 1996, Adjoint Equations and Perturbation Algorithms in Nonlinear Problems, CRC Press, Boca Raton.Google Scholar
  24. Parra-Guevara, D.: 2001, ‘Modelación Matemática y Simulación Numérica en el Control de Emisiones Industriales’, Ph.D. Thesis, Centro de Ciencias de la Atmósfera, UNAM, México, 130 pp.Google Scholar
  25. Parra-Guevara, D. and Skiba, Yu.N.: 2000, ‘Industrial pollution transport. Part II. Control of industrial emissions’, Environ. Model. Assess. 5, 177–184.Google Scholar
  26. Parra-Guevara, D. and Skiba, Yu.N.: 2003, ‘Elements of the matematical modelling in the control of pollutants emissions’, Ecol. Model. 167, 263–275.CrossRefGoogle Scholar
  27. Penenko, V.V.: 1975, ‘Computational aspects of modelling the atmospheric process dynamics and estimation of effects of various factors on the dynamics of the atmosphere’, in: Actual Problems of Numeric and Applied Mathematics, Nauka, Novosibirsk, pp. 61–77 (in Russian).Google Scholar
  28. Penenko, V.V.: 1979, ‘Estimation of the parameters of discrete models of the dynamics of atmosphere and ocean’, Sov. Meteorol. Hydrol. 7, 57–68.Google Scholar
  29. Penenko, V.V. and Raputa, V.F.: 1983, ‘Some models for optimizing the operation of the atmospheric-pollution sources’, Sov. Meteorol. Hydrol. 2, 46–54.Google Scholar
  30. Penenko, V. and Baklanov, A.: 2001, ‘Methods of sensitivity theory and inverse modelling for estimation of source term and nuclear risk/vulnerability areas’, in: Lecture Notes in Computer Science, vol. 2074, Springer, pp. 57–66.Google Scholar
  31. Pudykiewicz, J.: 1998, ‘Application of adjoint tracer transport equations for evaluating source parameters’, Atmos. Environ. 32, 3039–3050.Google Scholar
  32. Robertson, A.W.: 1992, ‘Diagnosis of regional monthly anomalies using the adjoint method. Part I. Temperature’, J. Atmos. Sci. 49, 885–905.Google Scholar
  33. Robertson, L. and Persson, C.: 1993, ‘Attempts to apply four-dimensional data assimilation of radiological data using the adjoint technique’, in: Radiation Protection Dosimetry, vol. 50, Nuclear Technology Publishing, pp. 333–337.Google Scholar
  34. Seibert, P.: 2001, ‘Inverse modelling with a Lagrangian particle dispersion model: Application to point releases over limited time intervals’, in: Gryning and Schiermeier (eds.), Air Pollution Modeling and Its Application, vol. XIV, Kluwer Academic/Plenum Publishers, New York.Google Scholar
  35. Shir, C.C. and Shich, L.J.: 1974, ‘A generalized urban air pollution model and its application to the study of SO2 distributions in the St. Louis Metropolitan Area’, J. Appl. Meteorol. 13, 185–204.CrossRefGoogle Scholar
  36. Shutyaev, V.P.: 1997, ‘Solvability of the data assimilation problem in the scale of Hilbert spaces for quasilinear singularly perturbed evolutionary problems’, Russ. J. Numer. Anal. Math. Model. 12, 53–66.CrossRefGoogle Scholar
  37. Skiba, Yu.N.: 1993, ‘Balanced and absolutely stable implicit schemes for the main and adjoint pollutant transport equations in limited area’, Rev. Intern. Contamin. Ambiental 9, 39–51.Google Scholar
  38. Skiba, Yu.N.: 1996, ‘Dual oil concentration estimates in ecologically sensitive zones’, Environ. Monit. Assess. 43, 139–151.CrossRefGoogle Scholar
  39. Skiba, Yu.N.: 1997, ‘Air pollution estimates’, World Resource Rev. 9, 542–556.Google Scholar
  40. Skiba, Yu.N.: 1999, ‘Direct and adjoint oil spill estimates’, Environ. Monit. Assess. 59, 95–109.CrossRefGoogle Scholar
  41. Skiba, Yu.N.: 2003, ‘On a method of detecting the industrial plants which violate prescribed emission rates’, Ecol. Model. 159, 125–132.CrossRefGoogle Scholar
  42. Skiba, Yu.N. and Davydova Belitskaya, V.: 2002, ‘Air pollution estimates in Guadalajara City’, Environ. Model. Assess. 7, 153–162.Google Scholar
  43. Skiba, Yu.N. and Davydova Belitskaya, V.: 2003, ‘On the estimation of impact of vehicular emissions’, Ecol. Model. 166, 169–184.CrossRefGoogle Scholar
  44. Skiba, Yu.N. and Parra-Guevara, D.: 2000, ‘Industrial pollution transport. Part I. Formulation of the problem and air pollution estimates’, Environ. Model. Assess. 5, 169–175.Google Scholar
  45. Talagrand, O. and Courtier, P.: 1987, ‘Variational assimilation of meteorological observations with the adjoint vorticity equation. I. Theory’, Quart. J. R. Meteor. Soc. 113, 1311–1328.Google Scholar
  46. Vautard, R., Beekmann, M. and Menut, L.: 2000, ‘Application of adjoint modelling in atmospheric chemistry: Sensitivity and inverse modelling’, Environ. Model. Software 15, 703–709.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Yuri N. Skiba
    • 1
    Email author
  • David Parra-Guevara
    • 1
  • Davydova Valentina Belitskaya
    • 2
  1. 1.Laboratorio de Modelación Matemática de Procesos Atmosféricos, Centro de Ciencias de la AtmósferaUniversidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaMéxicoMexico
  2. 2.Departamento de Meteorología, Servicio Meteorológico NacionalComisión Nacional del AguaMéxicoMexico

Personalised recommendations