Use of Central Stonerollers (Cyprinidae: Campostoma anomalum) from Tennessee as a Bioindicator of Metal Contamination

  • Joanna Burger
  • Kym Rouse Campbell
  • Todd S. Campbell
  • Tara Shukla
  • Carline Dixon
  • Michael Gochfeld
Article

Abstract

We compared the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in a small species of fish (Central stonerollers, Campostoma anomalum) collected from East Fork Poplar Creek (EFPC) and a reference site in eastern Tennessee. Stonerollers are minnows in the Cyprinidae family that serve as prey for many carnivores in aquatic systems. Fish were collected from East Fork Poplar Creek within the U.S. Department of Energy's Y-12 National Security Complex, part of the Oak Ridge Reservation, and from a reference stretch of the Little River in East Tennessee. Whole fish were homogenized for analysis. Concentrations of all metals (except arsenic) were significantly higher in stonerollers from EFPC compared to the reference site. Mercury levels in minnows from EFPC averaged 0.4 ppm (μg/g), four times higher than the average for fish in the U.S. in general. This was higher than levels in fish from the nearby Clinch River and higher than fillets of white bass (Morone chrysops) from the same creek. Most metal levels were inversely related to size and weight of the stonerollers, perhaps due to growth dilution.

Keywords

arsenic bioindicator cadmium Campostoma anomalum chromium fish lead manganese mercury metals Oak Ridge Reservation selenium Tennessee 

References

  1. Amyot, M., Lalonde, J. D., Poissant, L. and Lean, D. R. S.: 1999, ‘Mercury in Lake Ontario and the St. Lawrence River’, Great Lakes Res. Rev. 4, 1–3.Google Scholar
  2. Becker, P. H.: 2003, ‘Biomonitoring with birds’, in: B. A. Markert, A. M. Breure and H. G. Zechmeister (eds.), Bioindicators and Biomonitors: Principles, Concepts and Applications. Elsevier, NY, pp. 677–736.Google Scholar
  3. Berlin, M.: 1978, ‘Interactions between selenium and inorganic mercury’, Environ. Health. Persp. 25, 67–69.Google Scholar
  4. Bevelhimer, M. S. and Adams, S. M.:1996, ‘Assessing contaminant distribution and effects in a reservoir fishery’, Am. Fish. Soc. Symp. 16, 119–132.Google Scholar
  5. Bidone, E. D., Castilhos, Z. C., Santos, T. J. S., Souza, T. M. C. and Lacerda, L. D.: 1997, ‘Fish contamination and human exposure to mercury in Tartarugalzinho River, Northern Amazon, Brazil. A screening approach’, Water. Air Soil. Poll. 97, 9–15.CrossRefGoogle Scholar
  6. Birge, W. J., Price, D. J., Shaw, J. R., Spromberg, J. A., Wigginton, C. and Hogstrand, C.: 2000, ‘Metal body burden and biological sensors as ecological indicators’, Environ. Toxicol. Chem. 19, 1199–1212.CrossRefGoogle Scholar
  7. BMAP (Biological Monitoring and Abatement Program): 2004, ‘East Fork Poplar Creek. http://www.esd.ornl.gov/BMAP/epc.htm.
  8. Boening, D. W.: 2000, ‘Ecological effects, transport, and fate of mercury: A general review’, Chemosphere 40, 1335–1351.CrossRefGoogle Scholar
  9. Braune, B. M.: 1987, ‘Mercury accumulation in relation to size and age of Atlantic herring (Clupea harengus harengus) from the southwestern Bay of Fundy, Canada’, Arch. Environ. Contam. Toxicol. 16, 311–320.Google Scholar
  10. Brezonik, P. K., King, S. O. and Mach, C. E.: 1991, ‘The Influence of Water Chemistry on Trace Metal Bioavailability and Toxicity in Aquatic Organisms’, in: M. D. Newman and A. W. McIntosh (eds.), Metal Ecotoxicology, Lewis Publication, Boca Raton, FL.Google Scholar
  11. Burger, J. and Campbell, K. R.: 2004, ‘Species differences in contaminants in fish on and adjacent to the Oak Ridge reservation, Tennessee’, Environ. Res. 96, 145–155.Google Scholar
  12. Burger, J., Gaines, K. F., Boring, C. S., Stephens, Jr. W. L., Snodgrass, J. and Gochfeld, M.: 2001, ‘Mercury and selenium in fish from the Savannah River: Species, trophic level, and locational differences’, Environ. Res. 87, 108–118.CrossRefGoogle Scholar
  13. Burger, J., Gaines, K. F., Boring, C. S., Stephens, W. L., Snodgrass, J., Dixon, C., McMahon, M., Shukla, S., Shukla, T. and Gochfeld, M.: 2002, ‘Metal levels in fish from the Savannah River: Potential hazards to fish and other receptors’, Environ. Res. 89, 85–87.CrossRefGoogle Scholar
  14. Burger, J., Campbell, K. R., Campbell, T. S., Shukla, T., Jeitner, C. and Gochfeld, M.: ms, ‘The use of blood and skin as nondestructive indicators of heavy metal contamination in northern water snakes (Nerodia sipedon)’, Environ. Monit. Assess. (in revision).Google Scholar
  15. Campbell, K. R., Ford, C. J. and Levine, D. A.: 1998, ‘Mercury distribution in Poplar Creek, Oak Ridge, Tennessee, U.S.A.’, Environ. Toxicol. Chem. 17, 1191–1198.CrossRefGoogle Scholar
  16. Caurant, F., Amiard, J. C., Amiard-Triquet, C. and Sauriau, P. G.: 1994, ‘Ecological and biological factors controlling the concentrations of trace elements (As, Cd, Cu, Hug, Se, Zn) in delphinids Globicephala melas from the North Atlantic Ocean’, Mar. Ecol. Prog. Ser. 103, 207– 219.Google Scholar
  17. Cobb, G. P., Norman, D. M. and Kendall, R. J.: 1994, ‘Organochlorine contaminant assessment in Great Blue Herons using traditional and nonlethal monitoring techniques’, Environ. Pollut. 83, 299–309.CrossRefGoogle Scholar
  18. Collings, S. E., Johnson, M. S. and Leah, R. T.: 1996, ‘Metal contamination of angler-caught fish from the Mersey estuary’, Mar. Environ. Res. 41, 281–287.CrossRefGoogle Scholar
  19. Coyle, J. J., Ingersoll, D. R., Fairchild, C. G. and May, T. W.: 1993, ‘Effects of dietary selenium on the reproductive success of bluegills (Lepomis macrochirus)’, Environ. Toxicol. Chem. 12, 551– 565.Google Scholar
  20. Denton, G. R. W. and Burdon-Jones, C.: 1986, ‘Trace metals in fish from the Great Barrier Reef’, Mar. Poll. Bull. 17, 201–209.Google Scholar
  21. Department of Energy (DOE): 1996, Remedial Investigation/Feasibility Study of the Clinch River/Poplar Creek Operable Unit, Oak Ridge National Laboratory, Environmental Sciences Division, DOE/OR/01-1393/V1&D3 and ORNL/ER-315/V1&D3, Oak Ridge, TN.Google Scholar
  22. Downs, S. G., Macleod, C. L. and Lester, J. N.: 1998, ‘Mercury precipitation and its relation to bioaccumulation in fish: A literature review’, Water Air Soil. Poll. 108, 149–187.CrossRefGoogle Scholar
  23. Eisler, R.: 1985a, Selenium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review, U.S. Fish and Wildlife Service Rep. 85 (1.5), Washington DC.Google Scholar
  24. Eisler, R.: 1985b, Cadmium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review, U.S. Fish and Wildlife Service Rep. 85 (1.2), Washington DC.Google Scholar
  25. Eisler, R.: 1987, Mercury Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review, U.S. Fish and Wildlife Service Rep, 85 (1.10), Washington DC.Google Scholar
  26. Environmental Protection Agency: 2002, Environmental Protection Agency (EPA). Update: National Listing of Fish and Wildlife Consumption Advisories, U.S. Environmental Protection Agency, Cincinnati, Ohio. Also available on internet (http://www.epa.gov/ost.fish).
  27. Etnier, D. A. and Starnes, W. C.: 1993, The Fishes of Tennessee, University of Tennessee Press, Knoxville, Tennessee, p. 681.Google Scholar
  28. Fairey, R., Tabersk, K., Lamerdin, S., Johnson, E., Johnson, E., Clark, R. P., Downing, J. W., Newman, J. and Petreas, M.: 1997, ‘Organochlorines and other environmental contaminants in muscle tissue of sportfish collected from San Francisco Bay’, Mar. Poll. Bull. 14, 1058–1071.Google Scholar
  29. Ganther, H. E., Goudie, C., Sunde, M. L., Kopecky, M. J., Wagner, R., Sang-Hwang, O. H. and Hoekstra, W. G.: 1972, ‘Selenium relation to decreased toxicity of methylmercury added to diets containing Tuna’, Science 72, 1122–1124.Google Scholar
  30. Halbrook, R. S., Lewis, L. A., Aulerich, R. I. and Bursian, S. J.: 1997, ‘Mercury accumulation in mink fed fish collected from streams on the Oak Ridge Reservation’, Arch. Environ. Contam. Toxicol. 33, 312–316.CrossRefGoogle Scholar
  31. Handy, R. D.: 1993, ‘The effect of acute exposure to dietary Cd and Cu on organ toxicant concentrations in rainbow trout, Oncorhynchus mykiss’, Aquat. Toxicol. 21, 1–14.Google Scholar
  32. Haux, C. and Larsson, A.: 1984, ‘Long-term sublethal physiological effects on rainbow trout, Salmo gairdneri, during exposure to cadmium and after subsequent recovery’, Aquat. Toxicol. 5, 129–142.CrossRefGoogle Scholar
  33. Hayton, W. L. and Barron, M. G.: 1990, ‘Rate limiting barriers to xenobiotic uptake by the gill’, Environ. Toxicol. Chem. 9, 151–162.Google Scholar
  34. Hodson, P. V.: 1988, ‘The effect of metal metabolism on uptake, disposition and toxicity in fish’, Aquat. Toxicol. 11, 3–18.CrossRefGoogle Scholar
  35. Hrabik, T. R. and Watras, C. J.: 2002, ‘Recent declines in mercury concentrations in freshwater fishery: Isolating the effects of de-acidification and decreased atmospheric mercury deposition in Little Rock Lake’, Sci. Total Environ. 297, 229–237.CrossRefGoogle Scholar
  36. Kuehl, D. W. and Haebler, R.: 1995, ‘Organochlorine, organobromine, metal, and selenium residues in bottlenose dolphin (Tursiops truncatus) collected during an unusual mortality event in the Gulf of Mexico’, Arch. Environ. Contam. Toxicol. 28, 494–499.CrossRefGoogle Scholar
  37. Kushlan, J. A.: 1993, ‘Colonial waterbirds as bioindicators of environmental change’, Colon. Waterbirds 16, 223–251.Google Scholar
  38. Lacerda, L. D., Bidone, E. D., Giumaraes, A. F. and Pfeiffer, W. C.: 1994, ‘Mercury concentrations in fish from the Itacaiunas-Parauapebas River System, Carajas region’, Amazon Ann. Acad. Bras. Sci. 66, 373–379.Google Scholar
  39. Lange, T. R., Royals, H. E. and Connor, L. L.: 1994, ‘Mercury accumulation in largemouth bass (Micropterus salmoides) in a Florida Lake’, Arch. Environ. Contam. Toxicol. 27, 466–471.CrossRefGoogle Scholar
  40. Larsson, A.: 1977, ‘Some experimentally induced biochemical effects of cadmium on fish from the Baltic Sea’, Ambio Spec. Rep. 5, 1–67.Google Scholar
  41. Lazorchak, J. M., McCormick, F. H., Henry, T. R. and Herlihy, A. T.: 2003, ‘Contamination in fish in streams of the mid-Atlantic region: An approach to regional indicator selection and wildlife assessment’, Environ. Toxicol. Chem. 22, 545–553.CrossRefGoogle Scholar
  42. Lemly, D. A.: 1993a, ‘Guidelines for evaluating selenium data from aquatic monitoring and assessment studies’, Environ. Monit. Assess. 28, 83–100.CrossRefGoogle Scholar
  43. Lemly, D. A.: 1993b, ‘Metabolic stress during winter increases the toxicity of selenium to fish’, Aquat. Toxicol. 27, 133–158.Google Scholar
  44. Migdalski, E. C. and Fichter, G. S.: 1976, The Fresh and Salt Water Fishes of the World, Greenwich House, New York.Google Scholar
  45. Murray, S.: 2003, ‘Using water snakes as bioindicators of effects of environmental contamination’, Master Thesis, Rutgers University, Piscataway, NJ.Google Scholar
  46. Peterson, R. H., Metcalfe, J. L. and Ray, S.: 1983, ‘Effects of cadmium on yolk utilization, growth, and survival of Atlantic salmon alevins and newly feeding fry’, Arch. Environ. Contam. Toxicol. 12, 37–44.CrossRefGoogle Scholar
  47. Peterson, S. A., Herligy, A. T., Hughes, R. M., Motter, K. L. and Robbins, J. M.: 2002, ‘Level and extent of mercury contamination in Oregon, U.S.A., lotic fish’, Environ. Toxicol. Chem. 21, 2157–2164.CrossRefGoogle Scholar
  48. Phillips, G. R., Lenhart, T. E. and Gregory, R. W.: 1980, ‘Relations between trophic position and mercury accumulation among fishes from the Tongue River Reservoir, Montana’, Environ. Res. 22, 73–80.CrossRefGoogle Scholar
  49. Rao, V. R., Mitz, S. V., Hadden, C. T. and Cornaby, B. W.: 1996, ‘Distribution of contaminants in aquatic organisms from East Fork Poplar Creek’, Ecotoxicol. Environ. Safety 33, 44–54.CrossRefGoogle Scholar
  50. Reid, S. D. and McDonald, D. G.: 1988, ‘Effects of cadmium, copper, and low pH on ion fluxes in the rainbow trout, Salmo gairdneri’, Can. J. Fish Aquat. Sci. 45, 244–253.CrossRefGoogle Scholar
  51. Rodgers, D. W.: 1994, ‘You are What you Eat and a Little Bit More: Bioenergetics-based Models of Methylmercury Accumulation in Fish Revisited’, in: C. J. Watras, J. W. Huckabee (eds.), Mercury Pollution: Integration and Synthesis, Lewis Publisher, Boca Raton, FL, pp. 427–439 .Google Scholar
  52. Rohde, F. C., Arndt, R. G., Lindquist, D. G. and Parnell, J. F.: 1994, ‘Freshwater Fishes of the Carolinas, Virginia, Maryland, and Delaware, University North Carolina Press, Chapel Hill, NC, U.S.A.Google Scholar
  53. SAS (Statistical Analysis Systems): 1995, SAS Users' Guide, Statistical Institute, Cary, NC.Google Scholar
  54. Sastry, K. V. and Gupta, P. K.: 1979, ‘The effect of cadmium on the digestive system of the teleost fish, Heteropneustes fossilis’, Environ. Res. 19, 221–230.CrossRefGoogle Scholar
  55. Satoh, H., Yasuda, N. and Shimai, S.: 1985, ‘Development of reflexes in neonatal mice prenatally exposed to methylmercury and selenite’, Toxicol. Lett. 25, 199–203.Google Scholar
  56. Schmitt, C. J. and Brumbaugh, W. G.: 1990, ‘National contaminant biomonitoring program: Concentrations of arsenic, cadmium, copper, lead, mercury, selenium and zinc in U.S. Freshwater fish, 1976–1984’, Arch. Environ. Contam. Toxicol. 19, 731–747.Google Scholar
  57. Sepulveda, M. S., Quinn, B. P., Denslow, N. D., Holm, S. E. and Gross, T. S.: 2003, ‘Effects of pulp and paper mill effluents on reproductive success of largemouth bass’, Environ. Toxicol. Chem. 22, 205–213.Google Scholar
  58. South Florida Water Management District (SFWMD): 2003, Everglades Consolidated Report, West Palm Beach, FL.Google Scholar
  59. Southworth, G. W., Turner, R. R., Peterson, M. J., Bogle, M. A. and Ryon, M. G.: 2000, ‘Responses of mercury contamination in fish to decreased aqueous concentrations and loading of inorganic mercury in a small stream’, Environ. Monit. Assess. 63, 481–494.CrossRefGoogle Scholar
  60. Southworth, G. R. and Peterson, M. J.: 1998, ‘Accumulation of contaminants in biota in East Fork Poplar Creek’, pp. 4-1-42 in Third report on the Oak Ridge Y-12 plant biological monitoring and abatement program for East Fork Poplar Creek, Environmental Sciences Division Publication No. 4260, Oak Ridge, Tenn.Google Scholar
  61. Stafford, C. P. and Haines, T. A.: 2001, ‘Mercury contamination and growth rate in two Piscivore populations’, Environ. Toxicol. Chem. 20(9), 2099–2101.CrossRefGoogle Scholar
  62. Verta, M.: 1990, ‘Changes in fish mercury concentrations in an intensively fished lake’, Can. J. Fish Aquat. Sci. 47, 1888–1897.CrossRefGoogle Scholar
  63. Wagemann, R., Innes, S. and Richard, P. R.: 1996, ‘Overview and regional and temporal differences of heavy metals of whales and ringed seals in the Canadian Arctic’, Sci. Total Environ. 186, 41–66.Google Scholar
  64. Wiener, J. G. and Spry, D. J.: 1996, ‘Toxicological Significance of Mercury in Freshwater Fish’, in: W. N. Beyer, G. H. Heinz, and A. W. Redmom-Norwood, (eds.), Environmental Contaminants in Wildlife: Interpreting Tissues Concentrations, Lewis, Boca Raton, FL, pp. 297–339.Google Scholar
  65. World Health Organization (WHO): (1990), ‘IPCS-Methylmercury’, Environ. Health Criteria 101, 42–58.Google Scholar
  66. World Health Organization (WHO): (1991), ‘IPCS-Inorganicmercury’, Environ. Health Criteria 101, 42–58.Google Scholar
  67. Wren, C. D.: 1986, ‘Mammals as biological monitors of environmental metal levels’, Environ. Monit. Assess. 6, 127–144.CrossRefGoogle Scholar
  68. Yeardley, Jr, R. B., Lazorchak, J. M. and Paulsen, S. G.: 1998, ‘Elemental fish tissue contamination in northeastern U.S. lakes: Evaluation of an approach to regional assessment’, Environ. Toxicol. Chem. 17, 1875–1884.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Joanna Burger
    • 1
    • 2
  • Kym Rouse Campbell
    • 1
    • 3
  • Todd S. Campbell
    • 1
    • 4
  • Tara Shukla
    • 1
    • 5
  • Carline Dixon
    • 1
    • 5
  • Michael Gochfeld
    • 1
    • 5
  1. 1.Consortium for Risk Evaluation with Stakeholder Participation, and Environmental and Occupational Health Sciences InstitutePiscatawayU.S.A.
  2. 2.Division of Life SciencesNelson Biological Laboratory, Rutgers UniversityPiscatawayU.S.A.
  3. 3.Biological Research AssociatesTampaU.S.A.
  4. 4.Department of BiologyUniversity of TampaTampaU.S.A.
  5. 5.Environmental and Community MedicineUMDNJ-Robert Wood Johnson Medical SchoolPiscatawayU.S.A.

Personalised recommendations