Environmental Monitoring and Assessment

, Volume 109, Issue 1–3, pp 1–36 | Cite as

Sulphate, Nitrogen and Base Cation Budgets at 21 Forested Catchments in Canada, the United States and Europe

  • Shaun A. Watmough
  • Julian Aherne
  • Christine Alewell
  • Paul Arp
  • Scott Bailey
  • Tom Clair
  • Peter Dillon
  • Louis Duchesne
  • Catherine Eimers
  • Ivan Fernandez
  • Neil Foster
  • Thorjorn Larssen
  • Eric Miller
  • Myron Mitchell
  • Stephen Page
Article

Abstract

To assess the concern over declining base cation levels in forest soils caused by acid deposition, input-output budgets (1990s average) for sulphate (SO4), inorganic nitrogen (NO3-N; NH4-N), calcium (Ca), magnesium (Mg) and potassium (K) were synthesised for 21 forested catchments from 17 regions in Canada, the United States and Europe. Trend analysis was conducted on monthly ion concentrations in deposition and runoff when more than 9 years of data were available (14 regions, 17 sites). Annual average SO4 deposition during the 1990s ranged between 7.3 and 28.4 kg ha−1 per year, and inorganic nitrogen (N) deposition was between 2.8 and 13.8 kg ha−1 per year, of which 41–67% was nitrate (NO3-N). Over the period of record, SO4 concentration in deposition decreased in 13/14 (13 out of 14 total) regions and SO4 in runoff decreased at 14/17 catchments. In contrast, NO3-N concentrations in deposition decreased in only 1/14 regions, while NH4-N concentration patterns varied; increasing at 3/14 regions and decreasing at 2/14 regions. Nitrate concentrations in runoff decreased at 4/17 catchments and increased at only 1 site, whereas runoff levels of NH4-N increased at 5/17 catchments. Decreasing trends in deposition were also recorded for Ca, Mg, and K at many of the catchments and on an equivalent basis, accounted for up to 131% (median 22%) of the decrease in acid anion deposition. Base cation concentrations in streams generally declined over time, with significant decreases in Ca, Mg and K occurring at 8, 9 and 7 of 17 sites respectively, which accounted for up to 133% (median 48%) of the decrease in acid anion concentration. Sulphate export exceeded input at 18/21 catchments, likely due to dry deposition and/or internal sources. The majority of N in deposition (31–100%; median 94%) was retained in the catchments, although there was a tendency for greater NO3-N leaching at sites receiving higher (<7 kg ha-1 per year) bulk inorganic N deposition. Mass balance calculations show that export of Ca and Mg in runoff exceeds input at all 21 catchments, but K export only exceeds input at 16/21 sites. Estimates of base cation weathering were available for 18 sites. When included in the mass balance calculation, Ca, Mg and K exports exceeded inputs at 14, 10 and 2 sites respectively. Annual Ca and Mg losses represent appreciable proportions of the current exchangeable soil Ca and Mg pools, although losses at some of the sites likely occur from weathering reactions beneath the rooting zone and there is considerable uncertainty associated with mineral weathering estimates. Critical loads for sulphur (S) and N, using a critical base cation to aluminium ratio of 10 in soil solution, are currently exceeded at 7 of the 18 sites with base cation weathering estimates. Despite reductions in SO4 and H+ deposition, mass balance estimates indicate that acid deposition continues to acidify soils in many regions with losses of Ca and Mg of primary concern.

Keywords

acidic deposition critical loads forests input-output budgets soil acidification trend analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J. D., Nadelhoffer, K. J., Steudler P. and Melillo, J. M.: 1989, ‘Nitrogen saturation in northern forest ecosystems’, BioScience 39, 378–386.Google Scholar
  2. Alewell, C.: 2001, ‘Predicting reversibility of acidification: The European sulphur story’, Water, Air, Soil Pollut. 130, 1271–1276.Google Scholar
  3. Alewell, C., Bredemeier, M., Matzner, E. and Blanck, K.: 1997, ‘Soil solution response to experimentally reduced acid deposition in a forest ecosystem’, J. Environ. Qual. 26, 658–665.Google Scholar
  4. Alewell, C., Mitchell, M., Likens, G. E. and Krouse, R. H.: 1999, ‘Sources of stream sulfate at the Hubbard Brook Experimental Forest: Long-term analyses using stable isotopes’, Biogeochem. 44, 281–299.Google Scholar
  5. Alewell, C., Manderscheid, B., Meesenburg, H. and Bittersohl, J.: 2000a, ‘Is acidification still an ecological threat?’, Nature 407, 856–857.CrossRefGoogle Scholar
  6. Alewell, C., Manderscheid, B., Gerstberger P. and Matzner, E.: 2000b, ‘Effects of reduced atmospheric deposition on soil solution chemistry and elemental contents of spruce needles in NE-Bavaria, Germany’, J. Plant Nutr. Soil Sci. 163, 509–516.CrossRefGoogle Scholar
  7. Alewell, C., Armbruster, M., Bittersohl, J., Evans, C. D., Meesenburg, H., Moritz, K. and Prechtel, A.: 2001, ‘Are there signs of acidification reversal after two decades of reduced acid input in the low mountain ranges of Germany?’, Hydrol. Earth Syst. Sci. 5, 367–378.Google Scholar
  8. Armbruster, M.: 1998, ‘Zeitliche Dynamik der Wasser- und Elementflüsse in Waldökosystemen’, Freiburger Bodenkundl. Abhandl. 38, 1–301.Google Scholar
  9. Bailey, S. W., Hornbeck, J. W., Driscoll, C. T. and Gaudette, H. E.: 1996, ‘Calcium inputs and transport in a base-poor forest ecosystem as interpreted by Sr isotopes’, Wat. Resour. Res. 32, 707–719.CrossRefGoogle Scholar
  10. Bailey, S. W., Mayer, B. and Mitchell, M. J.: 2004, ‘The influence of mineral weathering on drainage water sulfate in the northeastern United States’, Hydrol. Process. 18, 1639–1653.CrossRefGoogle Scholar
  11. Bayley, S. E., Schindler, D. W., Beaty, K. G., Parker, B. R. and Stainton, M. P.: 1992, ‘Effects of multiple fires on nutrient yields from streams draining Boreal forest and fen watersheds: Nitrogen and phosphorus’, Can. J. For. Res. 49, 584–596.Google Scholar
  12. Beall, F. D., Semkin, R. G. and Jeffries, D. S.: 2001, ‘Trends in the output of first-order basins at Turkey Lakes Watershed, 1982–1996’, Ecosystems 4, 514–526.CrossRefGoogle Scholar
  13. Bernier, B. and Brazeau, M.: 1988, ‘Foliar nutrient status in relation to sugar maple dieback and decline in the Quebec Appalachians’, Can. J. For. Res. 18, 754–761.Google Scholar
  14. Bondietti, E. A., Baes, C. F. and McLaughlin, S. B.: 1989, ‘Radial trends in cation ratios in tree rings as indicators of the impact of atmospheric deposition on forests’, Can. J. For. Res. 19, 586– 594.Google Scholar
  15. Bredmeier, M., Blanck, K., Lamersdorf, N. and Wiedey, G. A.: 1995, ‘Response of soil water chemistry to experimental ‘clean rain’ in the NITREX roof experiment at Solling, Germany’, For. Ecol. Manage. 71, 31–44.CrossRefGoogle Scholar
  16. Bringmark, L. and Kvarnas, H.: 1995, ‘Leaching of nitrogen from small forested catchments having different deposition and different stores of nitrogen’, Water, Air, Soil Pollut. 85, 1167–1172.Google Scholar
  17. Campbell, J. L., Hornbeck, J. W., Mitchell, M. J., Adams, M. B., Castro, M. S., Droscoll, C. T., Kahl, J. S., Kochenderfer, J. N., Likens, G. E., Lynch, J. A., Murdoch, P. S., Nelson, S. J., Shanley, J. B.: 2004, ‘Input-output budgets of inorganic nitrogen for 24 forested watersheds in the northeastern United States: A review’, Water, Air, Soil Pollut. 151, 373–396.Google Scholar
  18. Clair, T. A., Dillon, P. J., Ion, J., Jeffries, D. S., Papineau, M. and Vet, R. J.: 1995, ‘Regional precipitation and surface water chemistry trends in southeastern Canada (1983–1991)’, Can. J. Fish. Aquat. Sci. 52, 197–212.Google Scholar
  19. Cosby, B. J., Hornberger, G. M., Galloway, J. N. and Wright, R. F.: 1985, ‘Timescales of catchment acidification’, Environ. Sci. Technol. 19, 1144–1149.CrossRefGoogle Scholar
  20. Creed, I. F. and Band, L. E.: 1998, ‘Exploring functional similarity in the export of nitrate-N from forested catchments: A mechanistic modeling approach’, Wat. Resour. Res. 34, 3079–3093.CrossRefGoogle Scholar
  21. DeHayes, D. H., Schaberg, P. G., Hawley, G. J. and Strimbeck, G. R.: 1999, ‘Acid rain impacts on calcium nutrition and forest health’, BioScience 49, 789–800.Google Scholar
  22. Devito, K. J., Westbrook, C. and Schiff, S. L.: 1999, ‘Nitrogen mineralization and nitrification in upland and peatland forest soils in two Canadian Shield catchments’, Can. J. For. Res. 29, 1793–1804.CrossRefGoogle Scholar
  23. Devito, K. J. and Hill, A. R.: 1999, ‘Sulphate mobilization and pore water chemistry in relation to groundwater hydrology and summer drought in two conifer swamps on the Canadian Shield’, Water, Air, Soil Pollut. 113, 97–114.Google Scholar
  24. Dillon, P. J. and LaZerte, B. D.: 1992, ‘Response of the Plastic Lake catchment, Ontario, to reduced sulphur deposition. Environ. Pollut. 77, 211–217.CrossRefPubMedGoogle Scholar
  25. Dise, N. B., Matzner, E. and Gundersen, P.: 1998, ‘Synthesis of nitrogen pools and fluxes from European ecosystems’, Water, Air, Soil Pollut. 105, 143–154.Google Scholar
  26. Dise, N. B. and Wright, R. F.: 1995, ‘Nitrogen leaching from European forests in relation to nitrogen deposition’, For. Ecol. Manage. 71, 153–161.CrossRefGoogle Scholar
  27. Draaijers, G. P. J., van Leeuwen, E. P., de Jong, P. G. H. and Erisman, J. W.: 1997a, ‘Base cation deposition in Europe – Part I. Model description, results and uncertainties’, Atmos. Environ. 31, 4139– 4157.CrossRefGoogle Scholar
  28. Draaijers, G. P. J., van Leeuwen, E. P., de Jong, P. G. H. and Erisman, J. W.: 1997b, ‘Base–cation deposition in Europe – Part II. Acid neutralization capacity and contribution to forest nutrition’, Atmos. Environ. 31, 4159–4168.CrossRefGoogle Scholar
  29. Driscoll, C. T., Lawrence, C. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eagar, C., Lambert, K. F., Likens, G. E., Stoddard, J. L. and Weathers, K. C.: 2001, ‘Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies’, BioScience 51, 180–198.Google Scholar
  30. Driscoll, C. T., Postek, K. M., Kretser, W. and Raynal, D. J.: 1995, ‘Long-term trends in the chemistry of precipitation and lake water in the Adirondack region of New York, U.S.A.’, Water, Air, Soil Pollut. 85, 583–588.Google Scholar
  31. Duchesne, L., Ouimet, R. and Houle, D.: 2002, ‘Basal area growth of sugar maple in relation to acid deposition, stand health, and soil nutrients’, J. Environ. Qual. 31,1676–1683.PubMedGoogle Scholar
  32. Edwards, P. J., Gregory, J. D. and Lee, A. H.: 1999, ‘Seasonal sulfate deposition and export patterns for a small Appalachian watershed’, Water, Air, Soil Pollut. 110, 137–155.Google Scholar
  33. Eimers, M. C., Dillon, P. J. and Watmough, S. A.: 2004, ‘Long-term (18-year) changes in sulphate concentrations in 2 Ontario headwater lakes and their inflows in response to decreasing deposition and climate variations’, Hydrol. Process. 18, 2617–2630.CrossRefGoogle Scholar
  34. Eimers, M. C. and Dillon, P. J.: 2002, ‘Climate effects on sulphate flux from forested catchments in south-central Ontario’, Biogeochem. 61, 337–355.CrossRefGoogle Scholar
  35. EMEP.: 2001, ‘Transboundary Acid Deposition in Europe. EMEP Summary Report 2001’, EMEP/CCC and MSC-W Report 1/2001, Norwegian Meteorological Institute, Oslo, Norway.Google Scholar
  36. Erisman, J., Grennfelt, P. and Sutton, M.: 2003, ‘The European perspective on nitrogen emission and deposition’. Environ. Internat. 29, 311–325.CrossRefGoogle Scholar
  37. Evans, C. D., Cullen, J. M., Alewell, C., Marchetto, A., Moldan, F., Kopáĉek, J., Prechtel, A., Rogora, M., Vesely, J. and Wright, R.: 2001, ‘Recovery from acidification in European surface Waters’, Hydrol. Earth Syst. Sci. 5, 283–298.Google Scholar
  38. Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, J. S. and Cosby, B. J.: 2003, ‘Experimental acidification causes soil base cation depletion in a New England forested watershed’, Soil Sci. Soc. Am. J. 67, 1909–1919.Google Scholar
  39. Forsius, M., Kleemola, S., Vuorenmaa, J. and Syri, S.: 2001, ‘Fluxes and trends of nitrogen and sulphur compounds at integrated monitoring sites in Europe’, Water, Air, Soil Pollut. 130, 1641– 1648.Google Scholar
  40. Foster, N. W., Mitchell, M. J., Morrison, I. K. and Shepard, J. P.: 1992, ‘Cycling of acid and base cations in deciduous stands of Huntington Forest, New York, and Turkey Lakes, Ontario’, Can. J. For. Res. 22, 167–174.Google Scholar
  41. Gimeno, L., Marin, E., del Teso, T. and Bourhim, S.: 2001, ‘How effective has been the reduction of SO2 emissions on the effect of acid rain on ecosystems?’, Sci. Tot. Environ. 275, 63–70.CrossRefGoogle Scholar
  42. Gundersen, P., Callesen, I. and de Vries, W.: 1998, ‘Nitrate leaching in forest ecosystems is controlled by forest floor C/N ratio’, Environ. Pollut. 102, 403–407.CrossRefGoogle Scholar
  43. Harriman, R., Watt, A. W., Christie, A. E. G., Collen, P., Moore, D. W., McCartney, A. G., Taylor, E. M. and Watson, J.: 2001, ‘Interpretation of trends in acidic deposition and surface water chemsitry in Scotland during the past three decades’, Hydrol. Earth Syst. Sci. 5, 407–420.Google Scholar
  44. Hedin, L. O., Granat, L., Likens, G. E., Buishand, T. A., Galloway, J. N., Butler, T. J. and Rodhe, H.: 1994, ‘Steep declines in atmospheric base cations in regions of North America’, Nature 367, 351–354.CrossRefGoogle Scholar
  45. Henriksen, A., Hindar, A., Hessen, D. O. and Kaste, O.: 1997, ‘Contribution of nitrogen to acidity in the Bjerkreim River in southwestern Norway’, Ambio 26, 304–311.Google Scholar
  46. Hirsch, R. M. and Slack, J. R.: 1984, ‘A nonparametric trend test for seasonal data with serial dependence’, Wat. Resour. Res. 20, 727–732.Google Scholar
  47. Hodson, M. E. and Langan, S. J.: 1999, ‘Considerations of uncertainty in setting critical loads of acidity of soils: The role of weathering rate determination’, Environ. Pollut. 106, 73–81.CrossRefPubMedGoogle Scholar
  48. Horsley, S. B., Long, R. P., Bailey, S. W., Hallett, R. A. and Hall, T. J.: 2000, ‘Factors associated with the decline disease of sugar maple on the Allegheny Plateau’, Can. J. For. Res. 30, 1365–1378.CrossRefGoogle Scholar
  49. Houle, D., Paquin, R., Camire, C., Ouimet, R. and Duchesne, L.: 1997, ‘Response of the Lake Clair watershed (Duchesnay, Quebec) to changes in precipitation chemistry (1988–1994)’, Can. J. For. Res. 27, 1813–1821.CrossRefGoogle Scholar
  50. Houle, D. and Carignan, R.: 1995, ‘Role of SO4 adsorption and desorption in the long–term S budget of a coniferous catchment on the Canadian Shield’, Biogeochem. 28, 162–182.CrossRefGoogle Scholar
  51. Ito, M., Mitchell, M. J. and Driscoll, C. T.: 2002, ‘Spatial patterns of precipitation quality and chemistry and air temperature in the Adirondack region of New York’, Atmos. Environ. 36, 1051–1062.CrossRefGoogle Scholar
  52. Jandl, R., Alewell, C. and Prietzel, J.: 2004, ‘Ca loss in Central European forest soils’, Soil Sci. Soc. Am. J. 68, 588–595.Google Scholar
  53. Jefts, S., Fernandez, I. J., Rustad, L. E. and Dail, B.: 2004, ‘Decadal responses in soil N dynamics at the Bear Brook Watershed in Maine U.S.A.’, For. Ecol. and Manage. 189, 189–205.CrossRefGoogle Scholar
  54. Jiang, M. and Jagels, R.: 1999, ‘Detection and quantification of changes in membrane-associated calcium in red spruce saplings exposed to acid fog’, Tree Physiol. 19, 909–916.PubMedGoogle Scholar
  55. Johnson, C. E., Driscoll, C. T., Siccama, T. G. and Likens, G. E.: 2000, ‘Element fluxes and landscape position in a northern hardwood forest watershed ecosystem’, Ecosystems 3, 159–184.CrossRefGoogle Scholar
  56. Keller, W., Dixit, S. S. and Heneberry, J.: 2001, ‘Calcium declines in northeastern Ontario lakes’, Can. J. Fish. Aquat. Sci. 58, 2011–2020.CrossRefGoogle Scholar
  57. Kirchner, J. W. and Lydersen, E.: 1995, ‘Base cation depletion and potential long-term acidification of Norwegian catchments’, Environ. Sci. Technol. 29, 1953–1960.CrossRefGoogle Scholar
  58. Kirchner, J. W., Dillon, P. J. and LaZerte, B.D.: 1992, ‘Predicted response of stream chemistry to acid loading tested in Canadian catchments’, Nature 358, 478–482.CrossRefGoogle Scholar
  59. Kolb, T. E. and McCormick, L.H.: 1993, ‘Etiology of sugar maple decline in four Pennsylvania stands’, Can. J. For. Res. 23, 2395–2402.Google Scholar
  60. Kolka, R. K., Grigal, D. F. and Nater, E. A.: 1996, ‘Forest soil mineral weathering rates: Use of multiple approaches’, Geoderma 73, 1–21.CrossRefGoogle Scholar
  61. Kopacek, J., Vesely, J. and Stuchlik, E.: 2001, ‘Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850–2000)’, Hydrol. Earth Syst. Sci. 5, 391–405.Google Scholar
  62. Lamersdorf, N. P., Beier, C., Blanck, K., Bredemeier, M., Cummins, T., Farrell, E. P., Kretzer, K., Rasmussen, L., Ryan, M., Weis, W. and Xu, Y. J.: 1998, ‘Effect of drought experiments using roof installations on acidification/nitrification of soils’, For. Ecol. Manage. 101, 95–109.CrossRefGoogle Scholar
  63. Langan, S. J., Reynolds, B. and Bain, D. C.: 1996, ‘The calculation of base cation release from mineral weathering in soils derived from Palaeozoic greywackes and shales in upland UK’, Geoderma 69, 275–285.CrossRefGoogle Scholar
  64. Larssen, T., Clarke, N., Tørseth, K. and Skjelkvåle, B. L.: 2002, ‘Prognoses for future acidification recovery of water, soils and forests: Dynamic modeling of Norwegian data from ICP Forests, ICP IM and ICP Waters’, SNO 4577-2002, Norwegian Institute for Water Research, Oslo. p. 38.Google Scholar
  65. Lawrence, G. B., Lovett, G. M. and Baevsky, Y. H.: 2000, ‘Atmospheric deposition and watershed nitrogen export along an elevational gradient in the Catskill Mountains, New York’, Biogeochem. 50, 21–43.CrossRefGoogle Scholar
  66. Lawrence, G. B., David, M. B., Bailey, S. W. and Shortle, W. C.: 1997, ‘Assessment of soil calcium status in red spruce forests in the northeastern United States’, Biogeochem. 38, 19–39.CrossRefGoogle Scholar
  67. LaZerte, B. D. and Scott, L.: 1996, ‘Soil water leachate from two forested catchments on the Precambrian Shield’, Can. J. For. Res. 26, 1353–1365.Google Scholar
  68. Likens, G. E., Driscoll, C. T. and Buso, D. C.: 1996, ‘Long-term effects of acid rain: Response and recovery of a forest ecosystem’, Science 272, 244–246.Google Scholar
  69. Lofgren, S., Bringmark, L., Aastrup, M., Hultberg, H., Kindbom and Kvarnas, H.: 2001, ‘Sulphur balances and dynamics in three forested catchments in Sweden’, Water, Air, Soil Pollut. 130, 631–636.Google Scholar
  70. Lokke, H., Bak, J., Falkengren-Grerup, U., Finlay, R. D., Ilvensniemi, H., Nygaard, P.H. and Starr, M.: 1996, ‘Critical loads of acidic deposition for forest soils: Is the current approach adequate?’, Ambio 25, 510–516.Google Scholar
  71. Lovett, G. M., Weathers, K. C. and Arthur, M. A.: 2002, ‘Control of nitrogen loss from forested watersheds by soil carbon:nitrogen ratio and tree species composition’, Ecosystems 5, 712–718.CrossRefGoogle Scholar
  72. Lovett, G. M., Weathers, K. C. and Sobczak, W. V.: 2000, ‘Nitrogen saturation and retention in forested watersheds of the Catskill Mountains, New York’, Ecol. Appl. 10, 73–84.Google Scholar
  73. Miller, E. K., Blum, J. D. and Friedland, A. J.: 1993, ‘Determination of soil exchangeable-cation loss and weathering rates using Sr isotopes’, Nature 362, 438–441.CrossRefGoogle Scholar
  74. Mitchell, M. J., Driscoll, C. T., Kahl, J. S., Likens, G. E., Murdoch, P. S. and Pardo, L. H.: 1996, ‘Climatic control of nitrate loss from forested watersheds in the northeast United States’, Environ. Sci. Technol. 30, 2609–2612.CrossRefGoogle Scholar
  75. Mitchell, M. J., Raynal, D. J. and Driscoll, C. T.: 1992, ‘Biogeochemistry of a forested watershed in the central Adirondack Mountains: Temporal changes and mass balances’, Water, Air, Soil Pollut. 88, 355–369.Google Scholar
  76. Moldan, F., Skeffington, R. A., Morth, C. M., Torssander, P., Hultberg, H. and Munthe, J.: 2004, ‘Results from the covered catchment experiment at Gardsjon, Sweden, after ten years of clean precipitation treatment’ Water, Air, Soil Pollut. 154, 371–384.Google Scholar
  77. Moritz, K., Bittersohl, J., Müller, F. X. and Krebs, M.: 1994, ‘Auswirkungen des Sauren Regens und des Waldsterbens auf das Grundwasser, Dokumentation der Methoden und Meß daten des Entwicklungsvorhabens 1988–1992’. Bayer. Landesamt für Wasserwirtschaft, München, Eigenverlag, Materialien Nr. 40.Google Scholar
  78. NEG/ECP Forest Mapping Group.: 2001, ‘Critical load of sulphur and nitrogen assessment and mapping protocol for upland forests’, New England Governors and Eastern Canadian Premiers, Acid Rain Action Plan, Halifax, Canada.Google Scholar
  79. Nilsson, P. and Grennfelt, J: 1988, ‘Critical loads for sulphur and nitrogen’, Nordic Council of Ministers, Copenhagen, Denmark.Google Scholar
  80. Norton, S. A. and Fernandez, I. J.: 1999 (eds.).: 1999, The Bear Brook Watershed in Maine – A Paired Watershed Experiment – The First Decade (1987–1997), Kluwer Academic Publishers. Boston. p. 250.Google Scholar
  81. Park, J. H., Mitchell, M. J., McHale, P. J., Christopher, S. F. and Myers, T. P.: 2003, ‘Impacts of changing climate and atmospheric deposition on N and S drainage losses from a forested watershed of the Adirondack Mountains, New York State’, Global Change Biol. 9, 1602–1619.CrossRefGoogle Scholar
  82. Posch, M., de Smet, P. A. M., Hettelingh, J. P. and Downing, R. J.: 2001, ‘Calculation and mapping of critical thresholds in Europe’, Status Report 1995, Coordination Center for Effects, Bilthoven, the Netherlands, RIVM Report No. 259101004, ISBN No. 90-6960-060-9.Google Scholar
  83. Prechtel, A., Alewell, C., Armbruster, M., Bittersohl, J., Cullen, J. M., Evans, C. D., Helliwell, R., Kopacek, J., Marchetto, A., Matzner, E., Meesenburg, H., Moldan, F., Moritz, K., Vesely, J. and Wright, R. F.: 2001, ‘Response of sulphur dynamics in European catchments to decreasing sulphate deposition’, Hydrol. Earth Syst. Sci. 5, 311–325.Google Scholar
  84. Raper, D. W. and Lee, D. S.: 1996, ‘Wet deposition at the sub-20 km scale in a rural upland area of England’, Atmos. Environ. 30, 1193–1297.CrossRefGoogle Scholar
  85. Sah, S. P. and Meiwes, K. J.: 1993, ‘Sulfur input and outputs for two European beech forests growing on different soil substrates’, Can. J. For. Res. 23, 1626–1630.Google Scholar
  86. Schiff, S. L., Devito, K. J., Elgood, R. J., McCrindle, P. M., Spoelstra, J. and Dillon, P. J.: 2002, ‘Two adjacent forested catchments: Dramatically different NO3 export’, Wat. Resour. Res. 38, 1292–1305.CrossRefGoogle Scholar
  87. Sen, P. K.: 1968, ‘Estimates of the regression coefficient base on Kendall's Tau’, J. Amer. Statis. Assn. 63, 1379–1389.Google Scholar
  88. Shepard, J. P., Mitchell, M. J., Scott, T. J., Zhang, Y. M. and Raynal, D. J.: 1989, ‘Measurements of wet and dry deposition in a northern hardwood forest’, Water, Air, Soil Pollut. 48, 225– 238.Google Scholar
  89. Shortle, W. C., Smith, K. T., Minocha, R. and Alexeyev, V. A.: 1995, ‘Similar patterns of change in stemwood calcium in red spruce and Siberian fir’, J. Biogeog. 22, 467–473.Google Scholar
  90. Shortle, W. C. and Smith, K. T.: 1988, ‘Aluminium-induced calcium deficiency syndrome in declining red spruce’, Science 240, 1017–1018.Google Scholar
  91. Skeffington, R. A.: 1999, ‘The use of critical loads in environmental policy making: A critical appraisal’, Environ. Sci. Technol. 33, 245–252.Google Scholar
  92. Stainton, M. P., Capel, M. J. and Armstrong, F. A. J.: 1977, The Chemical Analysis of Fresh Water, 2nd edn. Can. Fish. Mar. Serv. Misc. Spec. Publ. 25: p. 180.Google Scholar
  93. Starr, M., Lindroos, A. J., Tarvainen, T. and Tanskanen, H.: 1998, ‘Weathering rates in the Hietajarvi Integrated Monitoring Catchment’, Boreal Environ. Res. 3, 275–285.Google Scholar
  94. Stoddard, J. L., Traaen, T. S. and Skjelkvale, B. L.: 2001, ‘Assessment of nitrogen leaching at ICP-Waters sites (Europe and North America)’, Water, Air, Soil Pollut. 130, 781–786.Google Scholar
  95. Stoddard, J. L., Jeffries, D. S., Lukewille, A., Claire, T. A., Dillon, P. J., Driscoll, C. T., Forsius, M., Johannessen, M., Kahl, J. S., Kellogg, J. H., Kemp, A., Mannio, J., Monteith, D. T., Murdoch, P.~S., Patrick, S., Rebsdorf, A., Skjelkuale, B. L., Stainton, M. P., Traaen, T., Dam, van H., Webster, K. E., Wieting, J., Wilander, A.: 1999, ‘Regional trends in aquatic recovery from acidification in North America and Europe’, Nature 401, 575–578.CrossRefGoogle Scholar
  96. Sverdrup, H., Warfvinge, P. and Wickman, T.: 1998, ‘Estimating the Weathering Rate at Gardsjon Using Different Methods. in: H. Hultberg and R. Skeffington (Eds.), Experimental Reversal Of Acid Rain Effects: The Gardsjon Roof Project’ Wiley, U.K., pp 231–249.Google Scholar
  97. Tomlinson, G. H.: 2003, ‘Acidic deposition, nutrient leaching and forest growth’, Biogeochem. 65, 51–81.CrossRefGoogle Scholar
  98. Torseth, K., Hanssen, J. E. and Semb, A.: 1999, ‘Temporal and spatial variations in airborne Mg, Cl, Na, Ca and K in rural areas of Norway’, Sci. Tot. Environ. 234, 75–85.CrossRefGoogle Scholar
  99. Warfvinge, P. and Sverdrup, H.: 1992, ‘Calculating critical loads of acid deposition with PROFILE: A steady-state soil chemistry model’, Water, Air, Soil Pollut. 63, 119–143.Google Scholar
  100. Watmough, S. A. and Dillon, P. J.: 2004, ‘Major element fluxes from a coniferous catchment in central Ontario, 1983–1999’, Biogeochem. 67, 369–398.CrossRefGoogle Scholar
  101. Watmough, S. A., Eimers, M. C., Aherne, J. and Dillon, P. J.: 2004, ‘Climate effects on nitrate export from forested catchments in south-central Ontario’, Environ. Sci. Technol. 38, 2383–2388.CrossRefPubMedGoogle Scholar
  102. Watmough, S. A. and Dillon, P. J.: 2003a, ‘Calcium losses from a forested catchment in south central Ontario, Canada’, Environ. Sci. Technol. 37, 3085–3089.CrossRefGoogle Scholar
  103. Watmough, S. A. and Dillon, P. J.: 2003b, ‘Base cation and nitrogen budgets for seven forested catchments in south-central Ontario, 1983–1999’, For. Ecol. Manage. 177, 155–177.CrossRefGoogle Scholar
  104. Watmough, S. A. and Dillon, P. J.: 2003c, ‘Base cation and nitrogen budgets for a mixed hardwood catchment in south-central Ontario’, Ecosystems 6, 675–693.CrossRefGoogle Scholar
  105. Watmough, S. A., Aherne, J. and Dillon, P. J.: 2003, ‘The potential impact of harvesting on lake chemistry in south-central Ontario at current levels of acid deposition’, Can. J. Fish. Aquat. Sci. 60, 1095–1103.CrossRefGoogle Scholar
  106. Watmough, S. A.: 2002, ‘A dendrochemical survey of sugar maple in south-central Ontario’, Water, Air, Soil Pollut. 136, 165–187.Google Scholar
  107. Wright, R. F., Alewell, C., Cullen, J., Evans, C. D., Marchetto, A., Moldan, F., Prechtel, A. and Rogora, M.: 2001, ‘Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe’, Hydrol. Earth Syst. Sci. 5, 299–310.Google Scholar
  108. Wright, R. F. and Jenkins, A.: 2001, ‘Climate change as a confounding factor in reversibility of acidification: RAIN and CLIMEX projects’, Hydrol. Earth Syst. Sci. 5, 477–486.Google Scholar
  109. Yanni, S., Keys, K., Meng, F. -R., Yin, X., Clair, T. and Arp P.: 2000, ‘Modelling hydrological conditions in the maritime forest region of south western Nova Scotia’, Hydrol. Process. 14, 195–214.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Shaun A. Watmough
    • 1
  • Julian Aherne
    • 1
  • Christine Alewell
    • 2
  • Paul Arp
    • 3
  • Scott Bailey
    • 4
  • Tom Clair
    • 5
  • Peter Dillon
    • 1
  • Louis Duchesne
    • 6
  • Catherine Eimers
    • 1
  • Ivan Fernandez
    • 7
  • Neil Foster
    • 8
  • Thorjorn Larssen
    • 9
  • Eric Miller
    • 10
  • Myron Mitchell
    • 11
  • Stephen Page
    • 12
  1. 1.Environmental and Resource StudiesTrent UniversityPeterboroughCanada
  2. 2.Institute of Environmental GeosciencesUniversity of BaselBaselSwitzerland
  3. 3.University of New Brunswick FrederictonNew BrunswickCanada
  4. 4.Northeastern Research StationDurhamU.S.A.
  5. 5.Environmental Conservation BranchEnvironment CanadaSackvilleCanada
  6. 6.Direction de la Recherche ForestièreMinistère des Ressources NaturellesQuébecCanada
  7. 7.Department of Plant, Soil and Environmental SciencesUniversity of MaineOronoU.S.A.
  8. 8.Natural Resources CanadaCanadian Forest ServiceSault Ste. MarieCanada
  9. 9.Norwegian Institute for Water Research (NIVA)OsloNorway
  10. 10.Dartmouth CollegeHanoverU.S.A.
  11. 11.College of Environmental Science and ForestrySUNYSyracuseU.S.A.
  12. 12.Government of CanadaUniversity CrescentWinnipegCanada

Personalised recommendations