Advertisement

Environmental Monitoring and Assessment

, Volume 108, Issue 1–3, pp 189–203 | Cite as

Determining Ecoregions for Environmental and GMO Monitoring Networks

  • F. GraefEmail author
  • G. Schmidt
  • W. SchrÖder
  • U. Stachow
Article

Abstract

A representative environmental monitoring network at the regional scale cannot use raster-based or random sampling designs, but requires a stratified sampling procedure integrating different information layers, and it has to occur in ecologically differing homogeneous regions (ecoregions). These we have determined using a set of spatial strata with ecological variables which we analysed with classification and regression trees (CART). We present a framework for environmental monitoring, that covers different scales, and we transfer the framework to a potential GMO (genetically modified organisms) monitoring network. We use ecoregion and other environmental strata together with existing environmental monitoring networks to determine GMO monitoring sites more precisely.

Keywords

CART ecoregions environmental monitoring GMO monitoring networks spatial planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, R. G.: 2002, Ecoregion-Based Design for Sustainability, Springer, New York.Google Scholar
  2. Bastian, O.: 2000, ‘Landscape classification in Saxony (Germany) –A tool for ecological planning on a regional level’, Landscape Urban Plann. 50, 145–155.CrossRefGoogle Scholar
  3. Bossard, M., Feranec, J., Otahel, J. and Steenmans, C.: 2000, The Revised and Supplemented Corine Land Cover Nomenclature, European Environment Agency, Copenhagen.Google Scholar
  4. Brandt, J. J. E., Brunce, R. G. H., Howard, D. C. and Petit, S.: 2002, ‘General principles of monitoring land cover change based on two case studies in Britain and Denmark’, Landscape Urban Plann. 62, 37–51.CrossRefGoogle Scholar
  5. Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J.: 1984, Classification and Regression Trees, Wadsworth and Brooks/Cole, Monterey, CA.Google Scholar
  6. Cavalieri, L. F.: 1991, ‘Scaling-up field testing of modified microorganisms’, BioScience 41(8), 568–574.Google Scholar
  7. Chambers, J. M. and Hastie, T. J.: 1992, Statistical Models in SPlus, AT&T Bell Laboratories, Pacific Grove, California.Google Scholar
  8. Cipra, J.: 2003, ‘A method for improving classification accuracy and acreage assessments in irrigated crops’, Photogr. Eng. Remote Sens. 69(1), 6–8.Google Scholar
  9. Coppedge, B. R., Engle, D. M., Fuhlendorf, S. D., Masters, R. E. and Gregory, M. S.: 2001, ‘Landscape cover type and pattern dynamics in fragmented southern Great Plains grasslands, USA’, Landscape Ecol. 16, 677–690.CrossRefGoogle Scholar
  10. Dröschmeister, R.: 2001, ‘Bundesweites Naturschutzmonitoring in der “Normallandschaft” mit der Ökologischen Flächenstichprobe’, Natur und Landschaft 76(2), 58–69.Google Scholar
  11. EC: 2002, ‘Argumentaire on co-existence of gm crops with conventional and organic crops’, Retrieved from http://www.biotech-info.net/GMCrops.pdf.
  12. Eiden, G., Kayadjanian, M. and Vidal, C.: 2002, ‘Quantifying Landscape Structures: spatial and temporal dimensions’. Retrieved from http://europa.eu.int/comm/agriculture/publi/landscape/ch2.htm.
  13. Firbank, L. G., Heard, M. S., Woiwod, I. P., Hawes, C., Haughton, A. J., Champion, G. T., Scott, R. J., Hill, M. O., Dewar, A. M., Squire, G. R., May, M. J., Brooks, D. R., Bohan, D. A., Daniels, R. E., Osborne, J. L., Roy, D. B., Black, H. I. J., Rothery, P. and Perry, J. N.: 2003, ‘An introduction to the farm-scale evaluations of genetically modified herbicide-tolerant crops’, J. Appl. Ecol. 40, 2–16.CrossRefGoogle Scholar
  14. Gregory, P., von Grebmer, K., Ehart, O., Wolfenbarger, L. L. and Phifer, P. R.: 2001, ‘Risk assessment data for GM crops’, Science 292, 638–639.CrossRefPubMedGoogle Scholar
  15. Legendre, P. and Legendre, L.: 1998, Numerical Ecology, 2nd English Ed., Elsevier Science B.V, Amsterdam.Google Scholar
  16. Leigh, R. A. and Johnston, A. E.: 1994, ‘Long-Term Experiments in Agricultural and Ecological Sciences’, in: Proceedings of a Conference to Celebrate the 150th Anniversary of Rothamsted Experimental Station, 14–17 July 1993, CAB International, Wallingford.Google Scholar
  17. Lim, T. S., Loh, W. Y. and Shih, Y. S.: 2000, ‘A Comparison of Prediction Accuracy, Complexity and Training Time of Thirty-Three Old and New Classification Algorithms’, in: Machine Learning 40, Kluwer Academic Press, Boston, pp. 203–229.Google Scholar
  18. Marcinek, J. and Zaumseil, L.: 1993, ‘Brandenburg und Berlin im physisch-geographischen Überblick’, Geographische Rundschau 45(10), 556–563.Google Scholar
  19. Mertens, M., Nestler, I. and Huwe, B.: 2002, ‘GIS-based regionalization of soil profiles with Classification and Regression Trees (CART)’, J. Plant Nutr. Soil Sci. 165, 39–43.CrossRefGoogle Scholar
  20. Metzger, M., Bunce, B., Jongman, R. and Mücher, S.: 2003, ‘The environmental classification of Europe, a new tool for European Landscape ecologists,’ Landscape 20(5).Google Scholar
  21. Meynen, E., Schmithüsen, J., Gellert, J., Neef, E., Müller-Miny, H. and Schultze, J. H.: 1959–1962, Handbuch der naturräumlichen Gliederung Deutschlands. Bundesanstalt für Landeskunde und Raumforschung, Selbstverlag, Bad Godesberg.Google Scholar
  22. Morgan, J. N. and Sonquist, J. A.: 1963, ‘Problems in the analysis of survey data and a proposal’, Am. Stat. Assoc. J. 58, 415–434.Google Scholar
  23. Mueller-Dombois, D. and Ellenberg, H.: 1974, Aims and Methods of Vegetation Ecology, Wiley, New York, 547 pp.Google Scholar
  24. New, M., Lister, D., Hulme, M. and Makin, I.: 2002, ‘A high-resolution data set of surface climate over global land areas’, Climate Res. 21, 1–25.Google Scholar
  25. Paul, E. M., Thompson, C. and Dunwell, J. M.: 1995, ‘Gene dispersal from genetically modified oil seed rape in the field’, Euphytica 81, 283–289.CrossRefGoogle Scholar
  26. Petit, S., Firbank, L., Wyatt, B. and Howard, D.: 2001, MIRABEL: ‘Models for integrated review and assessment of biodiversity in European landscapes’, Ambio 30(2), 81–88.PubMedGoogle Scholar
  27. Piotrowski, J. A., Bartels, F., Salski, A. and Schmidt, G.: 1996, ‘Geostatistical regionalization of glacial aquitard thickness in northwestern Germany, based on fuzzy kriging’, Math. Geol. 28(4), 437–452.CrossRefGoogle Scholar
  28. Regal, P. J.: 1993, ‘The true meaning of “Exotic species” as a model for genetically engineered organisms’, Experientia 49, 225–234.CrossRefPubMedGoogle Scholar
  29. Rieger, M. A., Lamond, M., Preston, C., Powles, S. B. and Roush, R. T.: 2002, ‘Pollen-mediated movement of herbicide resistance between commercial canola fields’, Sci. Mag. 296, 2386–2388.Google Scholar
  30. Schmidt, G.: 2002, ‘Eine multivariat-statistisch abgeleitete ökologische Raumgliederung für Deutschland’, PhD thesis. Retrieved from http://www.dissertation.de/
  31. Schröder, W. and Schmidt, G.: 2001, ‘Defining Ecoregions as Framework for the Assessment of Ecological Monitoring Networks in Germany by Means of GIS and Classification and Regression Trees (CART)’, in: Gate to Environmental and Health Sciences (EHS). Retrieved from http://www.scientificjournals.com/sj/ehs/
  32. Sears, M. K., Hellmich, R. L., Stanley-Horn, D. E., Oberhauser, K. S., Pleasants, J. M., Mattila, H. R., Siegfried, B. D. and Dively, G. P.: 2001, ‘Impact of Bt corn pollen on monarch butterfly populations: A risk assessment’, PNAS 98(21), 11937–11942.CrossRefPubMedGoogle Scholar
  33. Steenmans, C. and Pinborg, U.: 2002, ‘Anthropogenic fragmentation of potential semi-natural and natural areas’. Retrieved from http://europa.eu.int/comm/agriculture/publi/landscape/ch5.htm
  34. Stein, A. and Ettema, C.: 2003, ‘An overview of spatial sampling procedures and experimental design of spatial studies for ecosystem comparisons’, J. Agric. Ecos. Environ. 94(1), 31–47Google Scholar
  35. Steinberg, D. and Colla, Ph.: 1995, CART. Tree-Structured Nonparametric Data Analysis, Salford Systems, San Diego, CA.Google Scholar
  36. Tüxen, R.: 1978, ‘Die heutige potentiell natürliche Vegetation als Gegenstand der Vegetationskartierung’, in: W. Lauer, H.-J. Klink (eds), Pflanzengeographie–Darmstadt (Wege der Forschung 130), 323–354.Google Scholar
  37. Underwood, A. J.: 1994, ‘On beyond BACI: Sampling designs that might reliably detect environmental Disturbances’, Ecol. Applic. 4(1), 3–15.Google Scholar
  38. Werner, A., Berger, G., Stachow, U. and Glemnitz, M.: 2000, ‘Abschätzung der Auswirkungen transgener Sorten auf Umweltqualitätsziele’, TA project report, BATS, Basel.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • F. Graef
    • 1
    Email author
  • G. Schmidt
    • 2
  • W. SchrÖder
    • 2
  • U. Stachow
    • 1
  1. 1.Leibniz Centre for Agricultural Landscape- and Land Use ResearchMünchebergGermany
  2. 2.Institute for Environmental SciencesUniversity of VechtaVechtaGermany

Personalised recommendations