Environmental Monitoring and Assessment

, Volume 105, Issue 1–3, pp 229–259 | Cite as

Uncertainty Assessment of Voc Emissions from Paint in the Netherlands Using the Nusap System

  • Jeroen P. Van Der Sluijs
  • James S. Risbey
  • Jerry Ravetz
Article

Abstract

We demonstrate an innovative approach to uncertainty assessment known as the NUSAP system, to assess qualitative and quantitative uncertainty for the case of emissions of volatile organic compounds (VOC) from paint in The Netherlands. Using expert elicitation, we identified key sources of error, critical assumptions, and bias in the monitoring process. We assessed pedigree and probabilistic uncertainty of all input quantities. We used four pedigree criteria to assess the strength of the knowledge base: proxy representation, empirical basis, methodological rigour and degree of validation. Using Monte Carlo analysis, we assessed sensitivity and propagation of uncertainty. Results for sensitivity and pedigree were combined in a ‘NUSAP Diagnostic Diagram’, which effectively highlighted the assumption for VOC percentage of imported paint as the weakest spot in the monitoring of VOC emissions. We conclude that NUSAP facilitates systematic scrutinization of method and underlying assumptions and structures creative thinking on sources of error and bias. It provides a means to prioritise uncertainties and focus research efforts on the potentially most problematic parameters and assumptions, at the same time identifying specific weaknesses in the knowledge base. With NUSAP, nuances of meaning about quantities can be conveyed concisely and clearly, to a degree that is not possible with statistic methods only.

Keywords

data quality emission monitoring NUSAP pedigree quality control quality evaluation uncertainty VOC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corral Quintana, S.A.: 2000, ‘Una Metodología integrada de exploración y compensión de los procesos de elaboración de políticas públicas’, Ph.D. Thesis, University of La Laguna.Google Scholar
  2. Ellis, E. C., Li, R. G., Yang, L. Z. and Cheng, X.: 2000a, ‘Long-term change in village-scale ecosystems in china using landscape and statistical methods’, Ecol. Appl. 10, 1057–1073.Google Scholar
  3. Ellis, E. C., Li, R. G., Yang, L. Z. and Cheng, X.: 2000b, ‘Long-term change in village-scale ecosystems in china using landscape and statistical methods’, Ecol. Appl. 10, 1057–1073; ‘Supplement 1: Data quality pedigree calculator’, Ecol. Arch. A010-006-S1. (http://www.esapubs.org/archive/appl/A010/006/default.htm).Google Scholar
  4. Funtowicz, S. O. and Ravetz, J. R.: 1990, Uncertainty and Quality in Science for Policy, Kluwer Academic Publishers, Dordrecht.Google Scholar
  5. InfoMil: 2000, KWS 2000 Annual Report 98–99, Informatiecentrum Milieuvergunningen (InfoMil), The Hague.Google Scholar
  6. IPCC: 2000, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change, Geneva.Google Scholar
  7. Nowotny, H.: 2003, ‘Democratising expertise and socially robust knowledge’, Sci. Public Policy 30(3) 151–156.Google Scholar
  8. ORNL and RFF: 1994, Estimating Fuel Cycle Externalities: Analytical Methods and Issues, Report 2, prepared by Oak Ridge National Laboratory and Resources for the Future for the U.S. Department of Energy.Google Scholar
  9. Risbey, J. S., Van der Sluijs, J. P. and Ravetz, J.: 2001, Protocol for the Assessment of Uncertainty and Strength in Emission Monitoring, Department of Science, Technology and Society, Utrecht University, STS report E-2001-10, 18 pp. Available from www.nusap.net
  10. Risbey, J., van der Sluijs, J., Kloprogge, P., Ravetz, J., Funtowicz, S. and Corral Quintana, S.: 2004, ‘Application of a checklist for quality assistance in environmental modelling to an energy model’, Env. Mod. Assess. (in press).Google Scholar
  11. RIVM: 1999, Milieubalans 1998. Het Nederlandse milieu verklaard. RIVM, Bilthoven.Google Scholar
  12. RIVM: 2001, Scientific Audit of Integrated Environmental Policy Assessment (IEPA), RIVM, Bilthoven, 28 pp.Google Scholar
  13. Saltelli, A., Chan, K. and Scott, E. M. (eds): 2000, Sensitivity Analysis, Probability and Statistics Series, Wiley, New York, 504 p.Google Scholar
  14. Saltelli, A., Tarantola, S., Campolongo, F. and Ratto, M.: 2004, Sensitivity Analysis in Practice, A Guide to Assessing Scientific Models, Wiley, New York, 200 pp.Google Scholar
  15. Slootbeek, G.: 1997, The Weighting Process of the Redesign of the Netherlands Foreign Trade Survey, CBS Statistics Netherlands, Division of Research and Development, Heerlen.Google Scholar
  16. Spetzler, C. S. and Steal von Holstein, C. A. S.: 1975, ‘Probability encoding in decision analysis’ Manage. Sci. 22(3) 340–358.Google Scholar
  17. Van Amstel, A. R., Olivier, J. and Ruyssenaars, P. G. (eds): 2000, Monitoring of Greenhouse Gases in the Netherlands: Uncertainty and Priorities for Improvement, WIMEK/RIVM report 773201003, Bilthoven.Google Scholar
  18. Van de Pol, F. and Diederen, B.: 1996, A Priority Index for Macro-Editing The Netherlands Foreign Trade Survey, CBS Statistics Netherlands, Division of Research and Development, Heerlen.Google Scholar
  19. Van der Sluijs, J. P.: 1997, ‘Anchoring Amid Uncertainty, on the Management of Uncertainty in Risk Assessment of Anthropogenic Climate Change’, Ph.D. Thesis, Utrecht University.Google Scholar
  20. Van der Sluijs, J. P.: 2002, ‘A way out of the credibility crisis around model-use in integrated environmental assessment’, Futures 34, 133–146.Google Scholar
  21. Van der Sluijs, J. P., Potting, J., Risbey, J. S., Van Vuuren, D., De Vries, B., Beusen, A., Heuberger, P., Corral Quintana, S., Funtowicz, S., Kloprogge, P., Nuijten, D., Petersen, A. and Ravetz, J.: 2001, Uncertainty Assessment of the IMAGE/TIMER B1 CO2 Emissions Scenario, Using the NUSAP Method, Dutch National Research Program on Climate Change, Report no. 410 200 104, 227 pp. Available from www.nusap.net
  22. Van der Sluijs, J. P., Risbey, J. S. and Ravetz, J.: 2002, Uncertainty Assessment of VOC Emissions from Paint in the Netherlands, Department of Science, Technology and Society, Utrecht University, STS report E-2002-13, 27 pp. Available from www.nusap.net
  23. Van der Sluijs, J. P., Risbey, J. S., Kloprogge, P., Ravetz, J. R., Funtowicz, S. O., Corral Quintana, S., Guimaraes Pereira, A., De Marchi, B., Petersen, A. C., Janssen, P. H. M., Hoppe, R. and Huijs, S. W. F.: 2003, RIVM/MNP Guidance for Uncertainty Assessment and Communication: Detailed Guidance, Copernicus Institute for Sustainable Development and Innovation, Utrecht University and RIVM-MNP, Utrecht, ISBN 90-393-3536-2, 71 pp. Available from www.nusap.netGoogle Scholar
  24. VROM: 1989, Project KWS 2000, Bestrijdingsstrategie voor de emissies van vluchtige organische stoffen, Projectgroep Koolwaterstoffen 2000, Ministry of Housing, Physical Planning and Environment, The Hague.Google Scholar
  25. VROM: 1998, National Environmental Policy Plan 3, Ministry of Housing, Physical Planning and Environment, The Hague.Google Scholar
  26. VVVF: 1999, Statistieken 1998 VVVF, Vereniging van Verf- en Drukinktfabrikanten, Leiden.Google Scholar
  27. Walker, W. E., Harremoës, P., Rotmans, J., Van der Sluijs, J. P., van Asselt, M. B. A., Janssen, P. and Krayer von Krauss, M. P.: 2003, ‘Defining uncertainty a conceptual basis for uncertainty management in model-based decision support’, Integrated Assess. 4(1), 5–17.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jeroen P. Van Der Sluijs
    • 1
  • James S. Risbey
    • 2
  • Jerry Ravetz
    • 3
  1. 1.Copernicus Institute for Sustainable Development and InnovationUtrecht UniversityUtrechtThe Netherlands
  2. 2.School of Mathematical SciencesMonash UniversityClaytonAustralia
  3. 3.Research Methods ConsultancyLondonUK

Personalised recommendations