Environmental Monitoring and Assessment

, Volume 107, Issue 1–3, pp 329–350 | Cite as

Effect of the Carbohydrate Composition of feed Concentratates on Methane Emission from dairy Cows and Their Slurry

  • I. K. Hindrichsen
  • H. R. Wettstein
  • A. Machmüller
  • B. Jörg
  • M. KreuzerEmail author


Dietary carbohydrate effects on methane emission from cows and their slurry were measured on an individual animal basis. Twelve dairy cows were fed three of six diets each (n = 6 per diet) of a forage-to-concentrate ratio of 1:1 (dry matter basis), and designed to cover the cows’ requirements. The forages consisted of maize and grass silage, and hay. Variations were exclusively accomplished in the concentrates which were either rich in lignified or non-lignified fiber, pectin, fructan, sugar or starch. To measure methane emission, cows were placed into open-circuit respiration chambers and slurry was stored for 14 weeks in 60-L barrels with slurry being intermittently connected to this system. The enteric and slurry organic matter digestibility and degradation was highest when offering Jerusalem artichoke tubers rich in fructan, while acid-detergent fiber digestibility and degradation were highest in cows and slurries with the soybean hulls diet rich in non-lignified fiber. Multiple regression analysis, based on nutrients either offered or digested, suggested that, when carbohydrate variation is done in concentrate, sugar enhances enteric methanogenesis. The methane emission from the slurry accounted for 16.0 to 21.9% of total system methane emission. Despite a high individual variation, the methane emission from the slurry showed a trend toward lower values, when the dietwas characterized by lignified fiber, a diet where enteric methane release also had been lowest. The study disproved the assumption that a lower enteric methanogenesis, associated with a higher excretion of fiber, will inevitably lead to compensatory increases in methane emission during slurry storage.


carbohydrates dairy cows manure storage methane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amberger, A., Vilsmeier, K. and Guster, R.: 1982, ‘Stickstofffraktionen verschiedener Güllen und deren Wirkung im Pflanzenversuch’, Z. Pflanzenernähr. Bodenk. 145, 325–336.Google Scholar
  2. AOAC (Association of Analytical Chemists): 1990, ‘Official Methods of Analysis’, 15th Edn., AOAC, Arlington, VA, U.S.A.Google Scholar
  3. Bach Knudsen, K. E., Aaman, P. and Eggum, B. O.: 1987, ‘Nutritive value of Danish-grown barley varities, I. Carbohydrates and other major constituents’, J. Cereal Sci. 6, 173–186.Google Scholar
  4. Bach Knudsen, K. E.: 1997, ‘Carbohydrate and lignin contents of plant materials used in animal feeding’, Animal Feed Sci. Technol. 67, 319–338.CrossRefGoogle Scholar
  5. Bannink, A., Kogut, J., Dijkstra, J., France, J., Tamminga, S. and van Vuuren, A. M.: 2000, ‘Modelling Production and Portal Appearance of Volatile Fatty Acids in Dairy Cows’, in J. P. McNamara, J. France and D. E. Beever (eds.), Modelling Nutrient Utilization in Farm Animals, CAB International, Wallingford, UK, pp. 87–102.Google Scholar
  6. Beever, D. E.: 1993, ‘Rumen Function’, in J. M. Forbes and J. France (eds.), Quantitative Aspects of Ruminant Digestion and Metabolism, CAB International, Wallingford, U.K., pp. 187–215.Google Scholar
  7. Benchaar, C., Rivest, J., Pomar, C. and Chiquette, J.: 1998, ‘Prediction of methane production from dairy cows using existing mechanistic models and regression equations’, J. Animal Sci. 76, 617–627.Google Scholar
  8. Bundeskanzlei: 2003, ‘Tierschutzverordnung (SR 455.1)’, EDMZ, Berne, Switzerland.Google Scholar
  9. Clemens, J., Trimborn, M., Amon, B., Kryvoruchko, V. and Weiland, P.: 2004, ‘Greenhouse Gas Mitigation by Anaerobic Digestion’, in A. Weiske (ed.), Proceedings of the International Conference on Greenhouse Gas Emissions from Agriculture, Mitigation Options and Strategies’, February 10–12, 2004, Leipzig, Germany, pp. 96–100.Google Scholar
  10. Demeyer, D. I. and Van Cleemput, O.: 1996, ‘Methane emissions through animals and from the ground. Special Issue’, Environ. Monit. Assess. 42, 1–210.CrossRefGoogle Scholar
  11. Ellgaard, L.: 2001, ‘Large Scale Manure Based Biogas Plants in Denmark. Configuration and Operational Experience’, in J. Takahashi and B.A. Young (eds.), Greenhouse Gases and Animal Agriculture, Elsevier Science B.V., Amsterdam, The Netherlands, pp. 231–241.Google Scholar
  12. Englyst, H. N., Wiggins, H. S. and Cummings, J. H.: 1982, ‘Determination of non-starch polysaccharides in plant food by gas-liquid chromatography of constituent sugars as alditol acetates’, Analyst 119, 1497–1509.CrossRefGoogle Scholar
  13. Giger-Reverdin, S. and Sauvant, D.: 2000, ‘Methane Production in Sheep in Relation to Concentrate Feed Composition from Bibliographic Data’, in I. Ledin. and P. Morand-Fehr (eds). 8th Seminar of the Sub-Network on Nutrition of the FAO-CIHEAM Inter-Regional Cooperative Research and Development Network on Sheep and Goats. INRA. Cahiers-Options-Mediterraneennes, Grignon, France, pp. 43–46.Google Scholar
  14. Hindrichsen, I. K., Wettstein, H.-R., Machmüller, A., Soliva, C.R., Bach Knudsen, K. E., Madsen, J. and Kreuzer, M.: 2004a, ‘Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro’, Can. J. Animal Sci. 84, 265–276.Google Scholar
  15. Hindrichsen, I. K., Mills, J. A. N., Madsin, J., Kreuzer, M. and Dijkstra, J.: 2004b, ‘Results of a mechanistic model estimating methane in relation to methane emissions measured in dairy cows’, J. Animal Feed Sci. 13(Supp. 1), 99–102.Google Scholar
  16. IPCC: 1996, Revised IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual, Bracknell, U.K.Google Scholar
  17. Johnson, D. E., Hill, T. M., Ward, G. M., Johnson, K. A., Branine, M. E., Carmean, B. R. and Lodman, D. W.: 1993, ‘Ruminants and Other Animals’, in M.A.K. Khalil (ed.) Atmospheric Methane Sources, Sinks, and Role in Global Change, Springer-Verlag, Berlin, Germany, pp. 199–229.Google Scholar
  18. Johnson, K. A. and Johnson, D. E.: 1995, ‘Methane emission from cattle’, J. Animal Sci. 73, 2483–2492.Google Scholar
  19. Johnson, D. E. and Ward, G. M.: 1996, ‘Estimates of animal methane emissions’, Environ. Monit. Assess. 42, 133–141.CrossRefGoogle Scholar
  20. Johnson, E. D., Ward, G. M. and Bernal, G.: 1997, ‘Biotechnology Mitigating the Environmental Effects of Dairying: Greenhouse Gas Emissions’, in R. A. S. Welch, D. J. W. Burns, S. R. Davis, A. I. Popay, C. G. Prosser (eds.), Milk Composition, Production and Biotechnology, CAB International, Wallingford, U.K., pp. 497–511.Google Scholar
  21. Jung, H. G., Mertens, D. R. and Payne, A. J.: 1997, ‘Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber’, J. Dairy Sci. 80, 1622–1628.PubMedGoogle Scholar
  22. Khalili, H. and Huhtanen, P.: 1991, ‘Sucrose supplements in cattle given grass silage-based diet. Digestion of cell wall carbohydrates’, Animal Feed Sci. Technol. 33, 263–273.CrossRefGoogle Scholar
  23. Külling, D. R., Menzi, H., Kröber, T. F., Neftel, A., Sutter, F., Lischer, P. and Kreuzer, M.: 2001, ‘Emissions of ammonia, nitrous oxide and methane from different types of dairy manure during storage as affected by dietary protein content’, J. Agric. Sci. 137, 235–250.Google Scholar
  24. Külling, D. R., Dohme, F., Menzi, H., Sutter, F., Lischer, P. and Kreuzer, M.: 2002, ‘Methane emissions of differently fed dairy cows and corresponding methane and nitrogen emissions from their manure during storage’, Environ. Monit. Assess. 79, 129–150.CrossRefPubMedGoogle Scholar
  25. Külling, D. R., Menzi, H., Sutter, F., Lischer, P. and Kreuzer, M.: 2003, Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived from grass- and hay-based rations’, Nutr. Cycl. Agroecosyst. 65, 13–22.CrossRefGoogle Scholar
  26. Larsson, K. and Bengtsson, S.: 1983, ‘Metodebeskrivning Nr. 22’, {Statens Lantbrukskemiske Laboratorium,} Uppsala, Sweden.Google Scholar
  27. Mathison, G. W., Okine, E. K., McAllister, T. A., Dong, Y., Galbraith, J. and Dmytruk, O. I. N.: 1998, ‘Reducing methane emissions from ruminant animals’, J. Appl. Animal Res. 14, 1–28.Google Scholar
  28. Møller, H. B., Sommer, S. G. and Ahring, B. K.: 2004, ‘Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure’, J. Environ. Qual. 33, 27–36.PubMedGoogle Scholar
  29. Moloney, A. P., Almiladi, A. A., Drennan, M. J. and Caffrey, P. J.: 1994, ‘Rumen and blood variables in steers fed grass silage and rolled barley or sugar cane molasses-based supplements’, Animal Feed Sci. Technol. 50, 37–54.CrossRefGoogle Scholar
  30. Monteny, G. J. and Bannink, A.: 2004, ‘Main Principles for GHG Abatement Strategies for Animal Houses, Manure Storage and Manure Management’, in A. Weiske (ed.), ‘Proceedings of the International Conference on Greenhouse Gas Emissions from Agriculture. Mitigation Options and Strategies’, February 10–12, 2004, Leipzig, Germany, pp. 38–44.Google Scholar
  31. Moss, A. R., Jouany, J.-P. and Newbold, J.: 2000, ‘Methane prediction by ruminants: Its contribution to global warming’, Ann. Zootechnol. 49, 231–253.CrossRefGoogle Scholar
  32. RAP (Federal Research Station for Animal Production): 1999, ‘Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer’, (4th rev. edn.), Landwirtschaftliche Lehrmittelzentrale, Zollikofen, Switzerland, 327 pp.Google Scholar
  33. Russell, J. B.: 1998, ‘The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro’, J. Dairy Sci. 81, 3222–3230.PubMedGoogle Scholar
  34. Safely, L. M.: 1989, ‘Methane Productions from Animal Wastes Management Systems’, Methane Emissions from Ruminants, ICF/USEPA Workshop, Palm Springs, U.S.A.Google Scholar
  35. Safely, L. M. and Westermann, P. W.: 1988, ‘Biogas production in anaerobic lagoons’, Biol. Wastes 23, 181–193.CrossRefGoogle Scholar
  36. Stensig, T., Weisbjerg, M. R. and Hvelplund, T.: 1998, ‘Digestion and passage kinetics of fiber in dairy cows as affected by the proportion of wheat starch or sucrose in the diet’, Acta Agric. Scand. A 48, 129–140.Google Scholar
  37. Sutter, F. and Beever, D. E.: 2000, ‘Energy and nitrogen metabolism in Holstein–Friesian cows during early lactation’, Animal Sci. 70, 503–514.Google Scholar
  38. Theander, O., {Å}man, P., Westerlund, E. and Graham, H.: 1994, ‘Enzymatic/chemical analysis of dietary fiber’, J. AOAC Int. 77, 703–709.PubMedGoogle Scholar
  39. Torrent, J., Johnson, D. E. and Reverter, A.: 1994, ‘Prediction of methane production in cattle using rates of digestion and passage’, J. Animal Sci. 72(Suppl 1), 728.Google Scholar
  40. Valk, H.: 1994, ‘Effects of partial replacement of herbage by maize silage on N-utilisation and milk production of dairy cows’, Livestock Prod. Sci. 40, 241–250.CrossRefGoogle Scholar
  41. Van Soest, P. J., Robertson, J. B. and Lewis, B. A.: 1991, ‘Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition’, J. Dairy Sci. 74: 3583–3597.PubMedGoogle Scholar
  42. Wilkerson, V. A., Casper, D. P. and Mertens, D. R.: 1995, ‘The prediction of methane production of Holstein cows by several equations’, J. Dairy Sci . 78, 2402–2414.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • I. K. Hindrichsen
    • 1
  • H. R. Wettstein
    • 1
  • A. Machmüller
    • 1
  • B. Jörg
    • 1
  • M. Kreuzer
    • 1
    Email author
  1. 1.Institute of Animal Sciences, Animal Nutrition, Swiss Federal Institute of Technology (ETH)ETH Centre/LFWZurichSwitzerland

Personalised recommendations