137Cs-Uptake into Wheat (Triticum Vulgare) Plants from Five Representative Soils of Bangladesh

  • B. Monira
  • S. M. UllahEmail author
  • A. S. Mollah
  • N. Chowdhury


A pot experiment was conducted to study the uptake of 137Cs by wheat grown in five representative soils of Bangladesh having different soil characteristics. Artificial application of 137Cs increased the activity in soils up to 45.9 Bq/kg soil, measured at the end of the harvest of wheat crop. Different plant parts had different ability to accumulate 137Cs. Grains had the least activity and transfer factor, while the highest activity and lowest transfer factor were measured in roots, which restricted translocation of 137Cs to wheat straw. The result showed that the transfer factors (mean value) varied from 0.05 to 0.114 in wheat straw, 0.066–0.133 in roots and 0.011–0.043 in wheat grains. The activity and transfer factor of radioactive cesium in wheat plants were found to be greatly influenced by soil properties, i.e. clay content, K, organic matter, CEC, pH, exchangeable ions, etc. Cation exchange capacity and calcium in soils influenced positively, while clay minerals, exchangeable K and organic matter, negatively affected the 137Cs activity concentrations in wheat plants.


137Cs soil transfer factor wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergeijk, K.E., Noordijk, H., Lembrecht, J. and Frissel, M.J.: 1992, ‘Influence of pH, soil organic matter content on soil-to-plant transfer of radiocesium and strontium as analysed by a nonparametric method,’, J. Environ. Radioact. 15, 265–276.Google Scholar
  2. Claus, B., Graahmann, B., Hoermanns, V., Kevneke, S., Leder, M., Mueller, H., Peters, E., Rieger, E.M., Schmitz-Feuerhake, I. and Wagschal, F.: 1990, ‘Sr-90 transfer factors for rye in podzolic soils: Dependence on soil parameters,’, Radiat. Environ. Biophys. 29, 241–245.Google Scholar
  3. Covell, D.F.: 1959, Analytical Chemistry 31, 17, 85.Google Scholar
  4. Evans, E.J. and Dekker, A.J.: 1966, ‘Plant uptake of Cs-137 from nine Canadian soils,’, Can. J. Soil. Sci. 46, 167–176.CrossRefGoogle Scholar
  5. Fredriksson, L. and Eriksson, A.: 1996, Studies on Plant Accumulation of Fission Products Under Swedish Conditions. VII. Plant Absorption of 90Sr and 137Cs from Soil as Influenced by Soil Organic Matter. Rep. FAO 4 A4485-4623. Research Institute of National Defense. Stockholm. p. 25.Google Scholar
  6. Frissel, M. J. and Koster, J.: 1987, ‘Soil to plant transfer of 239+240Pu, 241Am, 137Cs and 90Sr from global fallout in flour and bran from wheat, rye barley and oats as obtained by field measurements,’, Sci. Total Environ. 63, 111–124.Google Scholar
  7. Garten, C.R.J. and Paine, D.: 1977, ‘A multivariate analysis of factors affecting radio cesium uptake by Sagittaria latifolia in coastal plain environments,’, J. Environ. Qual. 6, 78–82.CrossRefGoogle Scholar
  8. Gastberger, M., Steinhäusler, F., Gerzabek, M.H., Humer, A. and Lettner, H.: 2000, ‘90Sr and 137Cs in environmental samples from Dolon near the Semipalatinsk number test site,’, Health Phys. 79(3), 257–265.Google Scholar
  9. Gerzabek, M. H., Ullah, S. M. and Mück, K.: 1989, ‘Cs-137 Transfer into Plants from Contaminated Austrian Soils,’, in: M.H. Gerzabek (ed.), Proceedings of the XIX ESNA-Conference Vienna, August 29–September 2, 1988, pp. 196–208.Google Scholar
  10. Haunold, E., Horak, O. and Gerzabek, M.H.: 1987, ‘Umweltradioactivität and ihre Auswirkurgen auf die Landwirtschaft. 1. Das Verhalten von Radionucliden in Boden und Pflanze,’, Die Bodenkultur 38, 95–118.Google Scholar
  11. Jackson, W.A., Craig, D. and Lugo, H. M.: 1965, ‘Effects of various cations on cesium uptake from soils and clay suspensions,’, Soil Sci. 99, 345–353.Google Scholar
  12. Kerpen, W.: 1989, ‘Cs-137 Uptake and Transfer as a Function of the Properties of 17 Soils,’, in: M.H. Gerzabek (ed.), Proceedings of the XIX ESNA-Conference Vienna, August 29–September 2, 1988, pp. 209–221.Google Scholar
  13. Kuehn, W., Handl, J. and Schuller, P.: 1983, ‘The influence of soil parameters on 137Cs uptake by plants from long-term fallout on forest clearings and grassland,’, Health Phys. 46, 1083-1093.Google Scholar
  14. Kühn, W., Handl, J. and Schuller, P.: 1984, ‘The influence of soil parameters on 137Cs-uptake by plants from long term fallout of forest clearings and grassland,’, Health Phys. 46, 1083-1093.CrossRefGoogle Scholar
  15. Malm, J., Rantavaara, A., Uusi-Raauva, A. and Paakkola, O.: 1991, ‘Uptake of cesium-137 from peat and compost mould by vegetables in a greenhouse experiment,’, J. Environ. Radioact. 14, 123–133.Google Scholar
  16. Maascanzoni, D.: 1989, ‘Plant uptake of activation and fission products in a long-term field study,’, J. Environ. Radioact. 10, 233–249.Google Scholar
  17. Mück, K.: 1988, ‘Contamination of Food in the First and Second Year after the Chernobyl Accident and its Derived Dose to the Austrian Population,’, in M.H. Gerzabek (ed.), Proceedings of the XIX ESNA-Conference Vienna, August 29–September 2, 34–52.Google Scholar
  18. Nishita, H., Romney, E.M., Alexande, G.V. and Larson, K.H.: 1960, ‘The soil influence of K and Cs on the release of 137Cs from three soils’, Soil Sci. 89, 167–176.Google Scholar
  19. Paasikallio, A.: 1984, ‘The effect of time on the availability of 90Sr and 137Cs to plants from Finnish soils,’, Ann. Agric. Fenn. 23, 109–120.Google Scholar
  20. Page, A.L., Miller, R.H. and Keeney, D.R.: 1982, Method of Soil Analysis. Part 2. American Society for Soil Science, Inc. Madison, Wisconsin, U.S.A.Google Scholar
  21. Rosen, K.: 1991, ‘Effect of Potassium Fertilization on Cesium Transfer to Grass, Barley and Vegetables after Chernobyl,’, in: L. Moberg (ed.), The Chernobyl Fallout in Sweden, Swedish Radiation Protection Institute, Stockholm. pp. 305–322.Google Scholar
  22. Schactsschabel, P., Blume, H.P., Hartge, K. H. and Schwertmann, U.: 1982, Lehrbuch der Bodenkunde. 11. Neue bearbeitete Auflage. Stuttgart.Google Scholar
  23. Smolders, E., Brande, K. and Merckx, R.: 1997, ‘Concentrations of 137Cs and K in soil solution predict the plant availability of 137Cs in soil,’, Environ. Sci. Technol. 31, 3432–3438.Google Scholar
  24. Strebl, F., Ringer, W. and Gerzabek, M.H.: 2002, ‘Radiocaesium contamination of meadow vegetation-time-dependent variety and influence of soil characteristics at grassland sites in Austria,’, J. Environ. Radioact. 58, 143–161.Google Scholar
  25. Ullah, S.M. and Gerzabek, M.H.: 1988, ‘Über die Verteilung von 137Cs in den Korngrossenfraktionen zweier kontaminierter Böden,’, Die Bodenkultur. 39, 293–297.Google Scholar
  26. Wilson, E. and Mistry, K.B.: 1987, ‘Studies on the mobility of cessium-137 and plutonium-239 in three major Indian soils,’, J. Nucl. Biol. 9, 85–88.Google Scholar
  27. Wang, J., Lai, S., Wang, J. and Lin, Y.: 1997, ‘Transfer of radionuclides from soil to grass in northern Taiwan,’, Appl. Radiat. Isot. 48, 301–303.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • B. Monira
    • 1
  • S. M. Ullah
    • 1
    Email author
  • A. S. Mollah
    • 2
  • N. Chowdhury
    • 1
  1. 1.Department of Soil, Water and EnvironmentUniversity of DhakaDhakaBangladesh
  2. 2.Bangladesh Atomic Energy CommissionDhaka

Personalised recommendations