Advertisement

Electronic Commerce Research

, Volume 18, Issue 1, pp 109–124 | Cite as

Multi-layer affective computing model based on emotional psychology

  • Qingyuan Zhou
Article

Abstract

The factors and transforms of affective state were analyzed based on affective psychology theory. After that, a multi-layer affective decision model was proposed by establishing mapping relation among character, mood and motion. The model reflected the changes of mood and emotion spaces based on different characters. Experiment showed that human emotion characteristics accorded with theory and law, thus providing reference for modeling of human–computer interaction system.

Keywords

Affective computing Emotional psychology Multi-layer model Emotion space 

Notes

Acknowledgements

This work is supported by the Social Sciences Foundation of Jiangsu Province (No. 16EYD006).

References

  1. 1.
    Ma, J., Choo, K.-K. R., Hsu, H., Jin, Q., Liu, W., Wang, K., et al. (2016). Perspectives on cyber science and technology for cyberization and cyber-enabled worlds. In Proceedings of 14th IEEE International Conference on Dependable Autonomic and Secure Computing (DASC 2016) (pp. 1–9), IEEE Computer Society Press. 8–12 Aug 2016.Google Scholar
  2. 2.
    Fardous, J., Du, T., Choo, K.-K. R., & Huang, S. (2017). Investigating mobile social media users’ behaviors in tourism collaborative information seeking. In Proceedings of ACM SIGIR Conference on Human Information Interaction & Retrieval (CHIIR 2017) (pp. 395–397). Oslo, Norway, 7–11 Mar.Google Scholar
  3. 3.
    Jitendra, R., Dalmia, Anmol., Choo, K.-K. R., Sambit, B., & Sanjay, J. (2017). Revisiting semi-supervised learning for online deceptive review detection. IEEE Access, 5, 1319–1327.CrossRefGoogle Scholar
  4. 4.
    Zhaolan, Meng. (1984). The new expansions of emotion research. Psychological Science, 01, 40–45.Google Scholar
  5. 5.
    Damasio, Antonio. (2006). Descartes’ error: Emotion, reason, and the human brain. New York: Random House.Google Scholar
  6. 6.
    Minsky, M. (1988). Society of mind. New York: Simon and Schuster.Google Scholar
  7. 7.
    Reeves, B., & Nass, C. (1996). The media equation: How people treat computers, television, and new media like real people and places. Stanford: CSLI Publications and Cambridge.Google Scholar
  8. 8.
    Picard, R. W. (1997). Affective computing (pp. 129–142). Cambridge: MIT Press.Google Scholar
  9. 9.
    Healey, J., Seger, J., & Picard, R. (1999). Quantifying driver stress: Developing a system for collecting and processing bio-metric signals in natural situations. Biomedical Sciences Instrumentation, 35, 193–198.Google Scholar
  10. 10.
    Min, H. S., Liu, D., & Wang, T.-M. (2012). Research on speech control model of intelligent robot dog. Computer Engineering, 38(01), 188–191. doi: 10.3969/j.issn.1000-3428.2012.01.060.Google Scholar
  11. 11.
    Xiaolan, Fu. (2008). Affective computing benefits to harmonious electronic society. Bulletin of Chinese Academy of Sciences, 23(5), 453–457.Google Scholar
  12. 12.
    Sloman, A. (2003). The cognition and affect project: Architectures, architecture-schemas, and the new science of mind [R]. Technical Report of School of Computer Science, University of Birmingham.Google Scholar
  13. 13.
    Wang, Z. (2000). Artificial psychology-a most accessible science research to human brain. Journal of University of Science and Technology Beijing, 22(5), 478–481.Google Scholar
  14. 14.
    Zheng, Y., & Wen, G. (1996). Agent oriented technology in multiple functional perceptive system. Journal of Software, 7(3), 163–167.Google Scholar
  15. 15.
    Song, Y.-X., & Jia, P.-F. (2004). A control architecture based on artificial emotion for anthropomorphic robot. Robot, 26(6), 491–495.Google Scholar
  16. 16.
    Wang, Z.-L. (2006). Artificial psychology and artificial emotion. CAAI Transactions on Intelligent Systems, 1(1), 38–43.Google Scholar
  17. 17.
    Zhou, Q. (2016). Cluster Comput, 19, 1275. doi: 10.1007/s10586-016-0580-y.CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Fu, Q., & Fu, X. (2009). Chinese Science Bulletin, 54, 4102. doi: 10.1007/s11434-009-0632-2.CrossRefGoogle Scholar
  19. 19.
    Ye, L., Linmi, T., & Xiaolan, F. (2009). The analysis of PAD emotional state model based on emotion pictures. Journal of Image and Graphics, 14(5), 753–758. doi: 10.11834/jig.20090501.Google Scholar
  20. 20.
    Xie, L., Wang, Z., Dongchun, R., et al. (2010). Research of driver emotion model under simplified traffic condition. Acta Automatica Sinica, 36(12), 1732–1743.CrossRefGoogle Scholar
  21. 21.
    Calvo, R. A., D’Mello, S., Gratch, J., & Kappas, A. (Eds.). (2014). The oxford handbook of affective computing. USA: Oxford University Press.Google Scholar
  22. 22.
    Ortony, A., Clore, G. L., & Collins, A. (1990). The cognitive structure of emotions (pp. 150–161). Cambridge: Cambridge University Press.Google Scholar
  23. 23.
    Elliott, C. (1994). Multi-media communication with emotion-driven “believable agents”. In AAAI Technical Report for the Spring Symposium on Believable Agents (pp. 16–20). Stanford University: AAAI.Google Scholar
  24. 24.
    Kshirsagar, S. (2002). A multilayer personality model. In Proceedings of the 2nd International Symposium on Smart Graphics. ACM, pp. 107–115. doi:  10.1145/569005.569021.
  25. 25.
    Guoliang, Y., Zhiliang, W., Guojiang, W., & Fengjun, C. (2006). Affective computing model based on emotional psychology. In L. Jiao, L. Wang, X. Gao, J. Liu, F. Wu (eds) Advances in natural computation, ICNC 2006, Lecture Notes in Computer Science, vol. 4221. Berlin: Springer. doi:  10.1007/11881070_37.
  26. 26.
    Fama, E. F., & French, K. R. (2016). Dissecting anomalies with a five-factor model. Review of Financial Studies, 29(1), 69–103. doi: 10.1093/rfs/hhv043.CrossRefGoogle Scholar
  27. 27.
    Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3–4), 169–200.CrossRefGoogle Scholar
  28. 28.
    Mehrabian, A. (1996). Current Psychology, 14, 261. doi: 10.1007/BF02686918.CrossRefGoogle Scholar
  29. 29.
    Picard, R. W., & Healey, J. (1997). Personal Technologies, 1, 231. doi: 10.1007/BF01682026.CrossRefGoogle Scholar
  30. 30.
    Vitalkar, Punam. M., Bendre, P. N., & Gulhane, S. M. (2016). Analysis of affective speech signals for emotion extraction and attitude prediction. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 5(7), 6243–6251. doi: 10.15662/IJAREEIE.2016.0507068.Google Scholar
  31. 31.
    Liu, C. Z., Jozani, M. M., & Choo, K.-K. R. (2017). The effect of the recommendation system in the mobile app market. In Proceedings of 23rd Americas Conference on Information Systems (AMCIS 2017). Association for Information Systems, 10–12 Aug 2017.Google Scholar
  32. 32.
    Rout, J. K., Choo, K. K. R., Dash, A. K., et al. (2017). Electronic Commerce Research. doi: 10.1007/s10660-017-9257-8.Google Scholar
  33. 33.
    Ling-jie, T. (2007). Emotion designing products-on the emotional methodology in the R & D of products. Hundred Schools in Art, 6, 146–149.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Economics and ManagementChangzhou Administrative CollegeChangzhouChina

Personalised recommendations