Electronic Commerce Research

, Volume 17, Issue 3, pp 521–551 | Cite as

Analysis and characterization of comparison shopping behavior in the mobile handset domain

  • Mona Gupta
  • Happy Mittal
  • Parag Singla
  • Amitabha Bagchi


In this work we characterize the session-level behavior of users on an Indian mobile phone comparison shopping website. We also correlate the popularity of handset on various news sources to its popularity on the shopping website. There are three aspects to our study: data analysis, correlation between news sources of product information and popularity of a handset, and behavior prediction. We have used KL divergence to show that a time-homogeneous Markov chain is observed when the number of clicks varies from 5 to 30. Our results depict that Markov chain model does not hold in entirety for comparison shopping setting but tells us how far the Markov chain model holds for this setting. Our analysis corroborates intuition that increasing price leads to decrease in popularity. After the strong correlation between various variables and user behavior was found, we predict the users macro (the overall sales of handset) and micro behavior (whether a user will convert or exit the site) using Markov logic networks. Our predictive model validates the intuition that past browsing behavior is an important predictor for future behavior. Methodology of combining data analysis with machine learning is, in our opinion, a new approach to the empirical study of such data sets.


Online comparison shopping User Behavior Markov Logic Networks Machine Learning 


  1. 1.
    eBizMBA. (2013). Top 15 most popular comparison shopping websites: May 2013.
  2. 2.
    Chatterjee, P., & Wang, Y. (2012). Online comparison shopping behavior of travel consumers. Journal of Quality Assurance in Hospitality and Tourism, 13(1), 1–23.CrossRefGoogle Scholar
  3. 3.
    Kohavi, R., Brodley, C., Frasca, B., Mason, L., & Zhang, Z. (2000). KDD-Cup 2000 Organizers’ Report: Peeling the onion. SIGKDD Explorations, 2(2), 86–98.CrossRefGoogle Scholar
  4. 4.
    Domingos, P., & Lowd, D. (2009). Markov logic: An interface layer for artificial intelligence. San Rafael, CA: Morgan & Claypool Publishers.Google Scholar
  5. 5.
    Gupta, M., Mittal, H., Singla, P., & Bagchi, A. (2014). Characterizing comparison shopping behavior: A case study. In Data engineering workshops (ICDEW).Google Scholar
  6. 6.
    Sarukkai, R. R. (2000). Link prediction and path analysis using Markov chains. Computer Networks, 33(1–6), 337–386.Google Scholar
  7. 7.
    Yates, R. B., Hurtando, C., Mendoza, M., & Dupret, G. (2005). Modeling user search behavior. In LA-WEB, Web congress.Google Scholar
  8. 8.
    Deshpande, M., & Karypis, G. (2004). Selective Markov models for predicting web page accesses. ACM Transactions Internet Technology, 4(2), 163–184.CrossRefGoogle Scholar
  9. 9.
    Zukerman, I., Albrecht, D. W., & Nicholson, A. E. (1999). Predicting users’ requests on the WWW. In Proceedings of user modeling (pp. 275–284).Google Scholar
  10. 10.
    Pirolli, P. L. T., & Pitkow, J. E. (1999). Distributions of surfers’ paths through the World Wide Web: Empirical characterizations. Journal World Wide Web, 2(1), 29–45.CrossRefGoogle Scholar
  11. 11.
    Sen, R., & Hansen, M. (2003). Predicting a web user’s next access based on log data. Journal of Computational Graphics and Statistics, 12, 143–155.CrossRefGoogle Scholar
  12. 12.
    Zhu, J., Hong, J., & Hughes, J. G. (2002). Using Markov chains for link prediction in adaptive web sites. In Proceedings of Software 2002: Computing in an imperfect world (pp. 60–73).Google Scholar
  13. 13.
    Cadez, I., Heckerman, D., Christopher, M., Padhraic, S., & Steven, W. (2000). Visualization of navigation patterns on a web site using model-based clustering. In Proceedings of conference on Knowledge discovery and data mining (pp. 280–284).Google Scholar
  14. 14.
    Li, J., & Sadagopan, N. (2008). Characterizing typical and atypical user sessions in clickstreams. In Proceedings of WWW’08.Google Scholar
  15. 15.
    Levene, M., & Loizou, G. (2003). Computing the entropy of user navigation in the web. Journal of Information Technology and Decision Making, 2, 459–476.CrossRefGoogle Scholar
  16. 16.
    Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86.CrossRefGoogle Scholar
  17. 17.
    Wolfinbarger, M., & Gilly, M. (2000). Consumer motivations for online shopping. In Proceedings of the AMCIS 2000 (pp. 1362–1366), California.Google Scholar
  18. 18.
    Moe, W. S., & Fader, P. S. (2004). Dynamic conversion behavior at E-commerce sites. Management Science, 50(3), 326–335.CrossRefGoogle Scholar
  19. 19.
    Mongomery, A. L., Li, S., Srinivasan, K., & Lichety, J. C. (2004). Modeling online browsing and path analysis using clickstream data. Marketing Science, 23(4), 579–595.CrossRefGoogle Scholar
  20. 20.
    Sismeiro, C., & Bucklin, R. E. (2004). Modeling purchase behavior at an E-commerce web site: A task completion approach. Journal of Marketing Research, 41(3), 306–323.CrossRefGoogle Scholar
  21. 21.
    Brown, D., & Hayes, N. (2008). Influencer marketing: Who really influences your customers?. Amsterdam: Elsevier.Google Scholar
  22. 22.
    Parikh, N., & Sundaresan, N. (2008). Scalable and near real-time burst detection from eCommerce queries. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 972–980).Google Scholar
  23. 23.
    Zhang, H., Parikh, N., Singh, G., & Sundaresan, N. (2013). Chelsea won, and you bought a T-shirt: Characterizing the interplay between Twitter and e-Commerce. In Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining (pp. 829–836).Google Scholar
  24. 24.
    Zhang, Y., & Pennacchiotti, M. (2013). Predicting purchase behaviors from Social Media. In Proceedings of the 22nd international conference on World Wide Web (WWW’13).Google Scholar
  25. 25.
    Nguyen, T. (2013, February). Q4 (2012) CSE rankings. Published by CPC Strategy.
  26. 26.
    Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M., & Watts, D. J. (2010). Predicting consumer behavior with web search. Proceedings of National Academy of Sciences, 107(41), 17486–17490.CrossRefGoogle Scholar
  27. 27.
    Choi, H., & Varian, H. (2012). Predicting the present with Google trends. The Economic Record, 88, 2–9.CrossRefGoogle Scholar
  28. 28.
    Massy, W. F., & Frank, R. E. (1985). Short term price and dealing effects in selected market segments. Journal of Marketing Research, 2, 171–185.CrossRefGoogle Scholar
  29. 29.
    Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.). (1996). Markov chain Monte Carlo in practice. London: Chapman and Hall.Google Scholar
  30. 30.
    Pentland, A., & Lin, A. (1995). Modeling and prediction of human behavior. Neural Computation, 11, 229–242.CrossRefGoogle Scholar
  31. 31.
    Pentland, A. P., & Wren, C. R. (1998). Dynamic models of human motion. In International conference on automatic face and gesture recognition (pp. 22–27).Google Scholar
  32. 32.
    Galata, A., Johnson, N., & Hogg, D. (2001). Learning variable length Markov models of behavior. Computer Vision and Image Understanding, 81, 398–413.CrossRefGoogle Scholar
  33. 33.
    Borges, J., & Levene, M. (2000). Data mining of user navigation patterns. In: Web usage analysis and user profiling (pp. 92–112). Heidelberg: Springer.Google Scholar
  34. 34.
    Singer, P., Helic, D., Taraghi, B., & Strohmaier, M. (2014). Detecting memory and structure in human navigation patterns using Markov chain models of varying order. PLoS ONE, 9(7), e102070.CrossRefGoogle Scholar
  35. 35.
    Chierichetti, F., Kumar, R., Raghavan, P., & Sarlos, T. (2012). Are web users really Markovian? In Proceedings of WWW’12 (pp. 609–618). New York: ACM.Google Scholar
  36. 36.
    Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.Google Scholar
  37. 37.
    Singla, P., & Domingos, P. (2006). Entity resolution with Markov logic. In Proceedings of the sixth IEEE international conference on data mining (pp. 572–582). Hong Kong: IEEE Computer Society Press.Google Scholar
  38. 38.
    Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., et al. (2008). The Alchemy system for statistical relational AI. Technical Report. University of Washington.
  39. 39.
    Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and deterministic dependencies. In Proceedings of AAAI-06. Boston: AAAI Press.Google Scholar
  40. 40.
    Schölkopf, B., Burges, C., & Smola, A. (Eds.). (1998). Advances in kernel methods: Support vector machines. Cambridge, MA: MIT Press.Google Scholar
  41. 41.
    Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont, CA: Wadsworth.Google Scholar
  42. 42.
    Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.Google Scholar
  43. 43.
    Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mona Gupta
    • 1
  • Happy Mittal
    • 1
  • Parag Singla
    • 1
  • Amitabha Bagchi
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations