Advertisement

Electronic Commerce Research

, 8:173 | Cite as

A descriptive reference framework for the personalisation of e-business applications

  • Panayiotis KoutsabasisEmail author
  • Modestos Stavrakis
  • Nikos Viorres
  • Jenny S. Darzentas
  • Thomas Spyrou
  • John Darzentas
Article

Abstract

Personalisation is widely considered as a critical element of contemporary electronic businesses. However, despite the wealth of scientific work on personalisation, the definition of the term remains blurred with as consequence a lack of clarity as to what to design or evaluate when it comes to this area of an e-business. E-business stakeholders, including designers, managers and customers, need to understand the significance of personalisation features for many reasons including: guidance for design and evaluation, user appeal and implications for e-business functionality. The paper introduces a descriptive framework for personalisation aspects of e-businesses, in business-to-consumer (B2C) situations, that is related to typical e-business functionality. The proposed framework classifies previous research and extends it to provide e-commerce stakeholders with a vocabulary for analysing e-businesses, for comparing personalisation features, and for explaining e-business commerce evaluation results. The framework is applied to the evaluation of the personalisation features of contemporary clothing e-businesses, and conclusions are drawn for the readiness of this sector to adopt personalisation requirements.

Keywords

Personalisation E-business Framework Case study Clothing e-business 

References

  1. 1.
    Alpert, S. R., Karat, J., Karat, C.-M., Brondie, C., & Vergo, J. G. (2003). User attitudes regarding a user-adaptive e-commerce Web site. User Modeling and User-Adapted Interaction, 13, 373–396. CrossRefGoogle Scholar
  2. 2.
    Ardissono, L., & Maybury, M. (2004). Special issue on user modeling and personalization for television, preface. User Modeling and User-Adapted Interaction, 14, 1–3. CrossRefGoogle Scholar
  3. 3.
    Awad, N., & Krishnan, M. S. (2006). The personalization privacy paradox: An empirical evaluation of information transparency and the willingness to be profiled online for personalization. Management Information Systems Quarterly, 30(1), 13–28. Google Scholar
  4. 4.
    Blackwell, R. D., Miniard, P. W., & Engel, J. F. (2001). Consumer behaviour (Vol. 9). Fort Worth: Dryden Press. Google Scholar
  5. 5.
    Bonett, M. (2001). Personalization of Web services: Opportunities and challenges. Ariadne, 28. http://www.ariadne.ac.uk/issue28/personalization/intro.html.
  6. 6.
    Briggs, P., Simpson, B., & De Angeli, A. (2004). Personalisation and trust: a reciprocal relationship? In Designing personalized user experiences in e-commerce. Human-computer interaction series (pp. 39–55). Dordrecht: Kluwer Academic. CrossRefGoogle Scholar
  7. 7.
    Danculovic, J., Rossi, G., Schwabe, D., & Miaton, L. (2001). Patterns for personalized Web applications. In Sixth European conference on pattern languages of programs. http://hillside.net/europlop.
  8. 8.
    Electronic business in the textile, clothing and footwear industries: Adherence to traditional production and trading summary of sector studies, e-business W@tch, March 2005. http://www.ebusiness-watch.org.
  9. 9.
    Fan, W., Gordon, M. D., & Pathak, P. (2005). Effective profiling of consumer information retrieval needs: a unified framework and empirical comparison. Decision Support Systems, 40, 213–233. CrossRefGoogle Scholar
  10. 10.
    Frias-Martineza, E., Magoulas, G., Chena, S., & Macredie, R. (2005). Modeling human behavior in user-adaptive systems: Recent advances using soft computing techniques. Expert Systems with Applications, 29, 320–329. CrossRefGoogle Scholar
  11. 11.
    Griffith, D. A., & Palmer, J. W. (1999). Leveraging the web for corporate success. Business Horizons, 42(1), 3–10. CrossRefGoogle Scholar
  12. 12.
    Hanani, U., Shapira, B., & Shoval, P. (2001). Information filtering: Overview of issues, research and systems. User Modeling and User-Adapted Interaction, 11(3), 203–259. CrossRefGoogle Scholar
  13. 13.
    Hanson, V., & Crayne, S. (2005). Personalization of Web browsing: Adaptations to meet the needs of older adults. Universal Access in the Information Society, 4, 46–58. CrossRefGoogle Scholar
  14. 14.
    Kim, W. (2002). Personalization: Definition, status, and challenges ahead. Journal of Object Technology, 1(1), 29–40. http://www.jot.fm/issues/issue_2002_05/column3. Google Scholar
  15. 15.
    Kobsa, A., Koenemann, J., & Pohl, W. (2001). Personalised hypermedia presentation techniques for improving online customer relationships. The Knowledge Engineering Review, 16(2), 111–155. CrossRefGoogle Scholar
  16. 16.
    McCrickard, S. D., & Chewar, C. M. (2003). Attuning notification design to user goals and attention costs. Communications of the ACM Archive, 46(3), 67–72. CrossRefGoogle Scholar
  17. 17.
    Murthi, B. P. S., & Sarkar, S. (2003). The role of the management sciences in research on personalization. Management Science, 49(10), 1344–1362. CrossRefGoogle Scholar
  18. 18.
    Nielsen, J. (1993). Usability Engineering. New York: Academic Press. Google Scholar
  19. 19.
    Papanikolaou, K., Grigoriadou, M., Kornilakis, H., & Magoulas, G. (2003). Personalizing the interaction in a Web-based educational hypermedia system: the case of INSPIRE. User Modeling and User-Adapted Interaction, 13, 213–267. CrossRefGoogle Scholar
  20. 20.
    Piller, F. T., & Stotko, C. (2002). Four approaches to deliver customized products and services with mass production efficiency. In: T. S. Durrani (Ed.), Proceedings of the IEEE international engineering management conference. Managing technology for the new economy (Vol. II, pp. 773–778). Cambridge University, UK, 18–20 August 2002. Google Scholar
  21. 21.
    Preece, J. (2000). Online communities: designing usability, supporting sociability. Chichester: Wiley. Google Scholar
  22. 22.
    Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56–58. CrossRefGoogle Scholar
  23. 23.
    Riemer, K., & Totz, C. (2003). The many faces of personalisation: An integrative economic overview of mass customisation and personalisation. In M. M. Tseng & F. T. Piller (Eds.), The customer centric enterprise: advances in mass customization and personlization (pp. 35–50). New York/Berlin: Springer. Google Scholar
  24. 24.
    Sarner, A., Berg, T., & Janowski, W. (2001). Personalization: customer value beyond the Web. Gartner Inc. Strategic analysis report, R-14-2601, 10 September 2001, http://www.gartner.com.
  25. 25.
    Schiaffino, S., & Anandi, A. (2004). User–interface agent interaction: personalization issues. International Journal of Human-Computer Studies, 60, 129–148. CrossRefGoogle Scholar
  26. 26.
    Schonberg, E., Cofino, T., Hoch, R., Podlaseck, M., & Sparagen, S. L. (2000). Measuring success. Communications of the ACM, 43(8), 53–57. CrossRefGoogle Scholar
  27. 27.
    Schubert, P., & Ginsburg, M. (2000). Virtual communities of transaction: the role of personalization in electronic commerce. Electronic Markets, 10(1), 45–55. CrossRefGoogle Scholar
  28. 28.
    Schubert, P., & Leimstoll, U. (2003). Extending ERP systems in SMEs into personalized e-commerce applications. In Proceedings of the tenth research symposium on emerging electronic markets (pp. 207–217). Bremen: University of Bremen. Google Scholar
  29. 29.
    Sicilia, M. (2005). Teaching e-commerce personalization technology: the need for a comprehensive view. Journal of Information Technology Education, 4, 85–96. Google Scholar
  30. 30.
    Spiliopoulou, M. (2000). Web usage mining for Web site evaluation. Communications of the ACM, 43(8), 127–134. CrossRefGoogle Scholar
  31. 31.
    Swearingen, K., & Sinha, R. (2001). Beyond algorithms: An HCI perspective on recommender systems. In Proceedings of the SIGIR 2001 workshop on recommender systems. Google Scholar
  32. 32.
    Telang, R., & Mukhopadhyay, R. (2005). Drivers of web portal use. Electronic Commerce Research and Applications, 4, 49–65. CrossRefGoogle Scholar
  33. 33.
    Teltzrow, M., & Kobsa, A. (2004). Communication of privacy and personalization in e-business. In: Proceedings of the WHOLES workshop A multiple view of individual privacy in the networked world, Stockholm, Sweden. Google Scholar
  34. 34.
    Viorres, N., Koutsabasis, P., Arnellos, A., Darzentas, J. S., Velasco, C., Mohamad, Y., Spyrou, T., & Darzentas, J. (2003). An approach for personalisation and content adaptation of Internet applications based on user and device profiles. In Proceedings of HCI international 2003 (HCII 2003), 24–26 June 2003, Heraklion, Crete. Google Scholar
  35. 35.
    Wietsma, R., & Ricci, F. (2005). Product reviews in mobile decision aid systems. In Proceedings of pervasive mobile interaction devices (PERMID 2005). http://www.medien.ifi.lmu.de/permid2005.
  36. 36.
    Wu, D., Tremaine, M., Instone, K., & Turoff, M. (2003). A framework for classifying personalization scheme used on e-commerce Websites. In Proceedings of the 36th Hawaii international conference on system sciences (HICSS’03). Google Scholar
  37. 37.
    Xu, D., & Wang, H. (2006). Intelligent agent supported personalization for virtual learning environments. Decision Support Systems, 42(2), 825–843. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Panayiotis Koutsabasis
    • 1
    Email author
  • Modestos Stavrakis
    • 1
  • Nikos Viorres
    • 1
  • Jenny S. Darzentas
    • 1
  • Thomas Spyrou
    • 1
  • John Darzentas
    • 1
  1. 1.Department of Product and Systems Design EngineeringUniversity of the Aegean HermoupolisSyrosGreece

Personalised recommendations