Advertisement

Electronic Commerce Research

, Volume 7, Issue 1, pp 69–88 | Cite as

A flexible model for tree-structured multi-commodity markets

  • Per Carlsson
  • Arne Andersson
Article

Abstract

In this article we study tree-structured multi-commodity markets. The concept is a way to handle dependencies between commodities on the market in a tractable way. The winner determination problem of a general combinatorial market is well known to be NP-hard.

It has been shown that on single-unit single-sided combinatorial auctions with tree-structured bundles the problem can be computed in polynomial time. We show that it is possible to extend this to multi-unit double-sided markets. Further it is possible to handle the commodities of a bundle not only as complements but as perfect substitutes too. Under certain conditions the computation time is still polynomial.

Keywords

Multi commodity markets Electronic markets Computational markets Equilibrium markets Resource allocation Power markets Bandwidth markets Computational complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, A., Carlsson, P., & Ygge, F. (2002). Resource allocation with wobbly functions. Computational Optimization and Applications, 23(2), 171–200.CrossRefGoogle Scholar
  2. 2.
    Andersson, A., & Ygge, F. (1998). Managing large scale computational markets. In: El-Rewini, H. (ed.), Proceedings of the Software Technology Track of the 31th Hawaiian International Conference on System Sciences (HICSS31), (vol. VII, pp. 4–14) IEEE Computer Society, Los Alamos, ISBN 0-8186-8251-5, ISSN 1060-3425, IEEE Catalog Number 98TB100216. (Available from http://www.enersearch.se/~ygge).
  3. 3.
    Andersson, A., & Ygge, F., (2001). Efficient resource allocation with non-concave objective functions. Computational Optimization and Applications, 20, 281–298.CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Borenstein, S., Jaske, M., & Rosenfeld, A. (2002). Dynamic pricing, advanced metering and demand response in electricity markets. (Available from http://www.ef.org).
  6. 6.
    Carlsson, P., Ygge, F., & Andersson, A. (2001). Extending equilibrium markets. IEEE Intelligent Systems, 16(4), 18–26.CrossRefGoogle Scholar
  7. 7.
    Carlsson, P., Ygge, F., & Andersson, A. (2003). A tractable mechanism for time dependent markets. Technical Report 2003-027, Department of Information Technology, Uppsala University, (Available from http://www.it.uu.se/research/reports/).
  8. 8.
    Carlsson, P., Ygge, F., & Andersson, A. (2003). A tractable mechanism for time dependent markets. In: Jen Yao Chung and Liang-Jie Zhang (ed.), CEC 2003, IEEE International Conference on E-Commerce (pp. 31–34). IEEE Computer Society, Los Alamos.Google Scholar
  9. 9.
    Ibaraki, T., & Katoh, N. (1998). Resource Allocation Problems – Algorithmic Approaches. The MIT Press, Cambridge, Massachusetts.Google Scholar
  10. 10.
    Katoh, N., & Ibaraki, T. Resource allocation problems. In: Du, D.-Z. & Pardalos, P.M. (eds.), Handbook of Combinatorial Optimization. (vol. 2, pp. 159–260). chapter Resource Allocation Problems, Kluwer Academic Publisher.Google Scholar
  11. 11.
    Nisan, N. (2000). Bidding and allocation in combinatorial auctions. In EC’00, Proceedings of the 2nd ACM Conference on Electronic Commerce (pp. 1–12). The Association for Computing Machinery, New York, USA.Google Scholar
  12. 12.
  13. 13.
    Patrick, R.H., & Wolak, F.A. (2001). Using customer demands under spot market prices for service design and analysis. Technical Report WO 2801-11, EPRI. (Available from http://www.rci.rutgers.edu/~rpatrick/hp.html).
  14. 14.
    Rasmusson L. Evaluating resource bundle derivatives for multi-agent negotiation of resource allocation. In Liu, J. & Ye, Y., (eds.), E-Commerce Agents, number 2033 in LNAI (pp. 154–165), Berlin Heidelberg, Springer Verlag.Google Scholar
  15. 15.
    Rasmusson, L., & Paues, G. (2002). Network components for market-based network admission and routing. Technical report, Swedish Institute of Computer Science, SICS, Kista, Sweden.Google Scholar
  16. 16.
    Rothkopf, M.H., Pekec, A., & Harstad, R.M. (1998). Computationally manageable combinatorial auctions. Management Science, 44(8), 1131–1147.CrossRefGoogle Scholar
  17. 17.
    Tennenholtz, M. (2000). Some tractable combinatorial auctions. In AAAI/IAAI 2000 Proceedings.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.EnerSearch and Uppsala University, Office: Computer Science DepartmentLund UniversityLundSweden
  2. 2.Uppsala UniversityUppsalaSweden

Personalised recommendations