Advertisement

Journal of Elasticity

, Volume 134, Issue 2, pp 175–191 | Cite as

Crack Growth Control Based on the Topological Derivative of the Rice’s Integral

  • M. Xavier
  • A. A. NovotnyEmail author
  • J. Sokołowski
Article
  • 78 Downloads

Abstract

In fracture mechanics, an important question concerns the useful life of mechanical components. Such components are, usually, submitted to the actions of external forces and/or degrading agents which can trigger the crack nucleation and propagation process. In particular, when a mechanical component is already partially cracked, the question is how to extend its remaining useful life. In this work, a simple and efficient methodology aiming to extend the remaining useful life of cracked elastic bodies is proposed. More precisely, we want to find a way to retard or even avoid the triggering of the crack propagation process by nucleating hard and/or soft inclusions far from the crack tip. The main idea consists in minimize a shape functional based on the Rice’s integral with respect to the nucleation of inclusions by using the concept of topological derivative. The obtained sensitivity, which corroborates with the famous Eshelby theorem, is used to indicate the regions where the controls have to be inserted. According to the Griffith’s energy criterion, this simple procedure allows for increasing the remaining useful life of the cracked body. Finally, some numerical experiments are presented showing the applicability of the proposed methodology.

Keywords

Rice’s integral Griffith’s criterion Eshelby’s tensor Topological derivative Topology optimization 

Mathematics Subject Classification

74B05 74R10 49Q12 49J20 35C20 35A15 

Notes

References

  1. 1.
    Amigo, R.C.R., Giusti, S.M., Novotny, A.A., Silva, E.C.N., Sokolowski, J.: Optimum design of flextensional piezoelectric actuators into two spatial dimensions. SIAM J. Control Optim. 52(2), 760–789 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ammari, H., Kang, H., Nakamura, G., Tanuma, K.: Complete asymptotic expansions of solutions of the system of elastostatics in the presence of inhomogeneities of small diameter. J. Elast. 67, 97–129 (2002) CrossRefzbMATHGoogle Scholar
  3. 3.
    Ammari, H., Kang, H., Kim, K., Lee, H.: Strong convergence of the solutions of the linear elasticity and uniformity of asymptotic expansions in the presence of small inclusions. Differ. Integral Equ. 254(12), 4446–4464 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ammari, H., Kang, H., Lee, H., Lim, J.: Boundary perturbations due to the presence of small linear cracks in an elastic body. J. Elast. 113, 75–91 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Amstutz, S.: Sensitivity analysis with respect to a local perturbation of the material property. Asymptot. Anal. 49(1–2), 87–108 (2006) MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bittencourt, T.N., Wawrzynek, P.A., Ingraffea, A.R., Sousa, J.L.: Quasi-automatic simulation of crack propagation for 2d LEFM problems. Eng. Fract. Mech. 55(2), 321–334 (1996) CrossRefGoogle Scholar
  7. 7.
    Destuynder, P.: Remarques sur le contrôle de la propagation des fissures en régime stationnaire. C. R. Acad. Sci. Paris, Ser. II 308(8), 697–701 (1989) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Eshelby, J.D.: The elastic energy-momentum tensor. J. Elast. 5(3–4), 321–335 (1975) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fancello, E.A., Taroco, E.O., Feijóo, R.A.: Shape sensitivity analysis in fracture mechanics. In: Structural Optimization—The World Congress on Optimal Design of Structural System, vol. 2, pp. 239–248 (1993) Google Scholar
  10. 10.
    Feijóo, R.A., Padra, C., Saliba, R., Taroco, E., Vénere, M., Marcelo, J.: Shape sensitivity analysis for energy release rate evaluation and its application to the study of three-dimensional cracked bodies. Comput. Methods Appl. Mech. Eng. 188(4), 649–664 (2000) ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Griffiths, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. 221, 163–198 (1921) ADSCrossRefGoogle Scholar
  12. 12.
    Gurtin, M.E.: Configurational Forces as Basic Concept of Continuum Physics. Applied Mathematical Sciences, vol. 137. Springer, New York (2000) zbMATHGoogle Scholar
  13. 13.
    Hellan, K.: Introduction to Continuum Mechanics. McGraw-Hill, New York (1985) Google Scholar
  14. 14.
    Hild, P., Münch, A., Ousset, Y.: On the active control of crack growth in elastic media. Comput. Methods Appl. Mech. Eng. 198(3–4), 407–419 (2008) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hömberg, D., Khludnev, A.M.: On safe crack shapes in elastic bodies. Eur. J. Mech. A, Solids 21, 991–998 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ingraffea, A.R., Grigoriu, M.: Probabilistic fracture mechanics: a validation of predictive capability. Technical report, Cornell University, Ithaca, New York (1990) Google Scholar
  17. 17.
    Khludnev, A., Leugering, G., Specovius-Neugebauer, M.: Optimal control of inclusion and crack shapes in elastic bodies. J. Optim. Theory Appl. 155(1), 54–78 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lopes, C.G., Santos, R.B., Novotny, A.A., Sokołowski, J.: Asymptotic analysis of variational inequalities with applications to optimum design in elasticity. Asymptot. Anal. 102, 227–242 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Münch, A., Pedregal, P.: Relaxation of an optimal design problem in fracture mechanic: the anti-plane case. ESAIM Control Optim. Calc. Var. 16(3), 719–743 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nazarov, S.A., Sokołowski, J., Specovius-Neugebauer, M.: Polarization matrices in anisotropic heterogeneous elasticity. Asymptot. Anal. 68(4), 189–221 (2010) MathSciNetzbMATHGoogle Scholar
  21. 21.
    Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics. Springer, Berlin (2013) CrossRefzbMATHGoogle Scholar
  22. 22.
    Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968) ADSCrossRefGoogle Scholar
  23. 23.
    Saliba, R., Padra, C., Vénere, M., Marcelo, J., Taroco, E., Feijóo, R.A.: Adaptivity in linear elastic fracture mechanics based on shape sensitivity analysis. Comput. Methods Appl. Mech. Eng. 194(34–35), 3582–3606 (2005) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Saurin, V.V.: Shape design sensitivity analysis for fracture conditions. Comput. Struct. 76, 399–405 (2000) CrossRefGoogle Scholar
  25. 25.
    Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sokołowski, J., Żochowski, A.: Modelling of topological derivatives for contact problems. Numer. Math. 102(1), 145–179 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Van Goethem, N., Novotny, A.A.: Crack nucleation sensitivity analysis. Math. Methods Appl. Sci. 33(16), 1978–1994 (2010) MathSciNetzbMATHGoogle Scholar
  28. 28.
    Xavier, M., Fancello, E.A., Farias, J.M.C., Van Goethem, N., Novotny, A.A.: Topological derivative-based fracture modelling in brittle materials: a phenomenological approach. Eng. Fract. Mech. 179, 13–27 (2017) CrossRefGoogle Scholar
  29. 29.
    Xavier, M., Novotny, A.A., Van Goethem, N.: A simplified model of fracking based on the topological derivative concept. Int. J. Solids Struct. 139–140, 211–223 (2018) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratório Nacional de Computação Científica LNCC/MCTCoordenação de Matemática Aplicada e ComputacionalPetrópolisBrazil
  2. 2.Institut Élie Cartan, UMR 7502 Laboratoire de MathématiquesUniversité de LorraineVandoeuvre Lès Nancy CedexFrance
  3. 3.Systems Research Institute of the Polish Academy of SciencesWarszawaPoland

Personalised recommendations