Advertisement

Journal of Elasticity

, Volume 133, Issue 2, pp 223–252 | Cite as

Finite Third-order Gradient Elasticity and Thermoelasticity

  • Jörg Christian ReiherEmail author
  • Albrecht Bertram
Article

Abstract

A constitutive format for the third-order gradient elasticity is suggested. It includes both isotropic and anisotropic non-linear behavior under finite deformations. Appropriate invariant stress and strain variables are introduced, which allow for reduced forms of the elastic energy law that identically fulfill the objectivity requirement. After working out the transformation behavior under a change of the reference placement, the symmetry transformations for third-order materials can be introduced. After the mechanical third-order theory, an extension to thermoelasticity is given, and necessary and sufficient conditions are derived from the Clausius-Duhem inequality.

Keywords

Third-order elasticity Second strain gradient elasticity Finite gradient elasticity 

Mathematics Subject Classification (2000)

74A99 74B20 

Notes

Acknowledgements

Jörg Christian Reiher’s position as a PhD-student has been funded by the German Research Foundation, Graduiertenkolleg 1554: Micro-Macro-Interactions in structured Media and Particle Systems.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aifantis, E.: The physics of plastic deformation. Int. J. Plast. 3, 211–247 (1987) CrossRefGoogle Scholar
  2. 2.
    Bertram, A.: An alternative approach to finite plasticity based on material isomorphisms. Int. J. Plast. 52, 353–374 (1998) zbMATHGoogle Scholar
  3. 3.
    Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction. Springer, Berlin (2005, 2008, 2012) zbMATHGoogle Scholar
  4. 4.
    Bertram, A.: Finite gradient elasticity and plasticity: a constitutive thermodynamical framework. Contin. Mech. Thermodyn. 27(6), 1039–1058 (2015) ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bertram, A.: Finite gradient elasticity and plasticity: a constitutive mechanical framework. Contin. Mech. Thermodyn. 27(6), 1039–1058 (2015) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bertram, A. (ed.): Compendium on Gradient Materials, Otto-von-Guericke-Universität Magdeburg 2017, Version May 2017. http://www.ifme.ovgu.de/ifme_media/FL/Publikationen/Compendium+on+Gradient+Materials_May+2017.pdf (2017). Latest Version: http://www.redaktion.tu-berlin.de/fileadmin/fg49/publikationen/bertram/Compendium_on_Gradient_Materials_Dec_2017.pdf
  7. 7.
    Bertram, A., Forest, S.: Mechanics based on an objective power functional. Tech. Mech. 27(1), 1–17 (2007) Google Scholar
  8. 8.
    Bertram, A., Forest, S.: The thermodynamics of gradient elastoplasticity. Contin. Mech. Thermodyn. 26, 269–286 (2014) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Bertram, A., Glüge, R.: Gradient materials with internal constraints. Math. Mech. Complex Syst. 4(1), 1–15 (2016).  https://doi.org/10.2140/memocs.2016.4.1 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bertram, A., Krawietz, K.: On the introduction of thermoplasticity. Acta Mech. 223(10), 2257–2268 (2012) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bertram, A., Svendsen, B.: On material objectivity and reduced constitutive equations. Arch. Mech. 53(6), 653–675 (2001) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cordero, N.M., Forest, S., Busso, E.P.: First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. Comput. Mater. Sci. 50, 1299–1304 (2011) CrossRefGoogle Scholar
  13. 13.
    Cordero, N.M., Forest, S., Busso, E.P.: Second strain gradient elasticity of nano-objects. J. Mech. Phys. Solids 97, 92–124 (2016) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Cross, J.J.: Mixtures of fluids and isotropic solids. Arch. Mech. 25(6), 1025–1039 (1973) MathSciNetzbMATHGoogle Scholar
  15. 15.
    de Leon, M., Epstein, M.: The geometry of uniformity in second-grade elasticity. Acta Mech. 114, 217–224 (1996) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dillon, O.W., Kratochvil, J.: A strain gradient theory of plasticity. Int. J. Solids Struct. 6, 1513–1533 (1970) CrossRefGoogle Scholar
  17. 17.
    Elzanowski, M., Epstein, M.: The symmetry group of second-grade materials. Int. J. Non-Linear Mech. 27(4), 635–638 (1992) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Eremeyev, V., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125–152 (2006) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Eremeyev, V., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012) CrossRefGoogle Scholar
  20. 20.
    Fleck, N.A., Müller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994) CrossRefGoogle Scholar
  21. 21.
    Forest, S., Sievert, R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003) CrossRefGoogle Scholar
  22. 22.
    Gluege, R., Kalisch, J., Bertram, A.: The eigenmodes in isotropic strain gradient elasticity. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, pp. 163–178. Springer, Berlin (2016) CrossRefGoogle Scholar
  23. 23.
    Gurtin, M.E.: Thermodynamics and the possibility of spacial interaction in elastic materials. Arch. Ration. Mech. Anal. 19(5), 339–352 (1965) CrossRefGoogle Scholar
  24. 24.
    Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Lazar, M., Maugin, G.M.: Dislocations in gradient elasticity revisited. Proc. R. Soc. A 462, 3465–3480 (2006) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Lazar, M., Maugin, G.M., Aifantis, E.C.: Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43, 1787–1817 (2006) CrossRefGoogle Scholar
  27. 27.
    Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–868 (1995) ADSCrossRefGoogle Scholar
  28. 28.
    Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965) CrossRefGoogle Scholar
  29. 29.
    Münch, I., Neff, P.: Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy. arXiv:1603.06153 (2016). Preprint, submitted MathSciNetCrossRefGoogle Scholar
  30. 30.
    Murdoch, A.I.: Symmetry considerations for materials of second grade. J. Elast. 9(1), 43–50 (1979) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Murdoch, A., Cohen, H.: Symmetry considerations for material surfaces. Arch. Ration. Mech. Anal. 72(1), 61–98 (1979) MathSciNetCrossRefGoogle Scholar
  32. 32.
    Perzyna, P.: A gradient theory of rheological materials with internal structural changes. Arch. Mech. 23(6), 845–850 (1971) zbMATHGoogle Scholar
  33. 33.
    Polizzotto, C.: A second strain gradient elasticity theory with second velocity gradient inertia—Part I: Constitutive equations and quasi-static behavior. Int. J. Solids Struct. 50(24), 3749–3765 (2013) CrossRefGoogle Scholar
  34. 34.
    Polizzotto, C.: Surface effects, boundary conditions and evolution laws within second strain gradient plasticity. Int. J. Plast. 60, 197–216 (2014) CrossRefGoogle Scholar
  35. 35.
    Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2), 04016112 (2016).  https://doi.org/10.1061/(ASCE)EM.1943-7889.0001184 CrossRefGoogle Scholar
  36. 36.
    Svendsen, B., Neff, P., Menzel, A.: On constitutive and configurational aspects of models for gradient continua with microstructure. Z. Angew. Math. Mech. 89(8), 687–697 (2009) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Toupin, R.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Truesdell, C.A., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3. Springer, Berlin (1965) Google Scholar
  39. 39.
    Wu, C.H.: Cohesive elasticity and surface phenomena. Q. Appl. Math. 50(1), 73–103 (1992) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Zbib, H.M., Aifantis, E.C.: On the postlocalization behavior of plastic deformation. Mechanics of Microstructures. MM Report No. I, Michigan Technological University, Houghton, MI (1987) Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für MechanikOtto-von-Guericke-Univ.MagdeburgGermany

Personalised recommendations