Skip to main content
Log in

On the Use of the Continuum Mechanics Method for Describing Interactions in Discrete Systems with Rotational Degrees of Freedom

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Elastic interactions in a system of two body-points possessing both translational and rotational degrees of freedom are studied for the most general case of motion in 3D space. The continuum mechanics method is used as a theoretical foundation for describing the interactions. A definition of strain measures for the discrete system is given by analogy with that in continuum mechanics. Constitutive equations for force and moment vectors are derived based on the energy balance equation. Several new interaction potentials are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tersoff, J.: New empirical model for the structural properties of sellicon. Phys. Rev. Lett. 56(6), 632–635 (1986)

    Article  ADS  Google Scholar 

  2. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991–7000 (1988)

    Article  ADS  Google Scholar 

  3. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42(15), 9458–9471 (1990)

    Article  ADS  Google Scholar 

  4. Zhao, H., Alurua, N.R.: Temperature and strain-rate dependent fracture strength of graphene. J. Appl. Phys. 108, 064321 (2010)

    Article  ADS  Google Scholar 

  5. Savin, A.V., Kivshar, Y.S., Hu, B.: Suppression of thermal conductivity in graphene nanoribbons with rough edges. Phys. Rev. B 82, 195422 (2010)

    Article  ADS  Google Scholar 

  6. Gupta, S.S., Barta, R.C.: Elastic properties and frequencies of free vibrations of single-layer graphene sheets. J. Comput. Theor. Nanosci. 7, 1–14 (2010)

    Article  Google Scholar 

  7. Mindlin, R.D.: Elasticity, piezoelectricity and crystal lattice dynamics. J. Elast. 2(4), 217–282 (1972)

    Article  Google Scholar 

  8. Askar, A.: Molecular crystals and the polar theories of the continua. Experimental values of material coefficients for KNO3. Int. J. Eng. Sci. 10, 293–300 (1972)

    Article  Google Scholar 

  9. Pouget, J., Maugin, G.A.: Nonlinear dynamics of oriented elastic solids. I. Basic equations. J. Elast. 22(2–3), 135–155 (1989)

    Article  MathSciNet  Google Scholar 

  10. Pouget, J., Maugin, G.A.: Nonlinear dynamics of oriented elastic solids. II. Propagation of solitons. J. Elast. 22(2–3), 157–183 (1989)

    Article  MathSciNet  Google Scholar 

  11. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  12. Moreno-Razo, J.A., Sambriski, E.J., Koenig, G.M., Díaz-Herrera, E., Abbotta, N.L., de Pablo, J.J.: Effects of anchoring strength on the diffusivity of nanoparticles in model liquid-crystalline fluids. Soft Matter 7, 6828–6835 (2011)

    Article  ADS  Google Scholar 

  13. Price, S.L., Stone, A.J., Alderton, M.: Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry. Mol. Phys. 52(4), 987–1001 (1984)

    Article  ADS  Google Scholar 

  14. Allen, M.P., Germano, G.: Expressions for forces and torques in molecular simulations using rigid bodies. Mol. Phys. 104(20), 3225–3235 (2006)

    Article  ADS  Google Scholar 

  15. Coleman, B.D., Olson, W.K., Swigon, D.: Theory of sequence-dependent DNA elasticity. J. Chem. Phys. 118(15), 7127–7140 (2003)

    Article  ADS  Google Scholar 

  16. Moakher, M., Maddocks, J.H.: A double-strand elastic rod theory. Arch. Ration. Mech. Anal. 177(1), 53–91 (2005)

    Article  MathSciNet  Google Scholar 

  17. Ivanova, E.A., Krivtsov, A.M., Morozov, N.F., Firsova, A.D.: Description of crystal particle packing considering moment interactions. Mech. Solids 38(4), 101–117 (2003)

    Google Scholar 

  18. Ivanova, E.A., Kirvtsov, A.M., Morozov, N.F.: Macroscopic relations of elasticity for complex crystal latices using moment interaction at microscale. Appl. Math. Mech. 71(4), 543–561 (2007)

    Article  MathSciNet  Google Scholar 

  19. Kuzkin, V.A., Krivtsov, A.M.: Description for mechanical properties of graphene using particles with rotational degrees of freedom. Dokl. Phys. 56(10), 527–530 (2011)

    Article  ADS  Google Scholar 

  20. Kuzkin, V.A., Asonov, I.E.: Vector-based model of elastic bonds for simulation of granular solids. Phys. Rev. E 86, 051301 (2012)

    Article  ADS  Google Scholar 

  21. Kuzkin, V.A., Krivtsov, A.M.: Enhanced vector-based model for elastic bonds in solids. Lett. Mater. 7(4), 455–458 (2017)

    Article  Google Scholar 

  22. Bagi, K.: Microstructural stress tensor of granular assemblies with volume forces. J. Appl. Mech. 66(4), 934–936 (1999)

    Article  ADS  Google Scholar 

  23. Kruyt, N.P.: Statics and kinematics of discrete Cosserat-type granular materials. Int. J. Solids Struct. 40(3), 511–534 (2003)

    Article  Google Scholar 

  24. Murdoch, A.I.: On the microscopic interpretation of stress and couple stress. J. Elast. 71(1–3), 105–131 (2003)

    Article  MathSciNet  Google Scholar 

  25. Bagi, K.: Analysis of microstructural strain tensors for granular assemblies. Int. J. Solids Struct. 43(10), 3166–3184 (2006)

    Article  Google Scholar 

  26. Murdoch, A.I.: On molecular modelling and continuum concepts. J. Elast. 100(1–2), 33–61 (2010)

    Article  MathSciNet  Google Scholar 

  27. Cundall, P.A.: A computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings Symposium Int. Soc. Rock Mech., Nancy Metz, vol. 1. (1971). S. Paper II-8

    Google Scholar 

  28. Cundall, P.A., Strack, O.D.L.: A distinct element model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  29. Deng, Sh., Li, H., Ma, G., Huang, H., Li, X.: Simulation of shale-proppant interaction in hydraulic fracturing by the discrete element method. Int. J. Rock Mech. Min. Sci. 70, 219–228 (2014)

    Article  Google Scholar 

  30. Kuzkin, V.A., Krivtsov, A.M., Linkov, A.M.: Computer simulation of effective viscosity of fluid-proppant mixture used in hydraulic fracturing. J. Min. Sci. 50(1), 1–9 (2014)

    Article  Google Scholar 

  31. Kuzkin, V.A., Krivtsov, A.M., Linkov, A.M.: Comparative study of rheological properties of suspension by computer simulation of Poiseuille and Couette flows. J. Min. Sci. 50(6), 1017–1025 (2014)

    Article  Google Scholar 

  32. Basu, D., Das, K., Smart, K., Ofoegbu, G.: Comparison of Eulerian-granular and discrete element models for simulation of proppant flows in fractured reservoirs. In: Fluids Engineering Systems and Technologies. ASME International Mechanical Engineering Congress and Exposition, vol. 7B, p. V07BT09A012 (2015). https://doi.org/10.1115/IMECE2015-50050. ASME

    Chapter  Google Scholar 

  33. Bancewicz, M., Poła, J., Koza, Z.: Simulations of proppant transport in microfractures. In: 19th EGU General Assembly, EGU2017, Proceedings from the Conference, 23–28 April 2017, Vienna, Austria, p. 16538 (2017)

    Google Scholar 

  34. Zhang, G., Gutierrez, M., Li, M.: A coupled CFD-DEM approach to model particle- fluid mixture transport between two parallel plates to improve understanding of proppant micromechanics in hydraulic fractures. Powder Technol. 308, 235–248 (2017)

    Article  Google Scholar 

  35. Zhilin, P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976)

    Article  MathSciNet  Google Scholar 

  36. Altenbach, H., Naumenko, K., Zhilin, P.A.: A micro-polar theory for binary media with application to phase-transitional ow of fiber suspensions. Contin. Mech. Thermodyn. 15(6), 539–570 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  37. Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006)

    Google Scholar 

  38. Zhilin, P.A.: Rational Continuum Mechanics. Polytechnic University Publishing House, St. Petersburg (2012). (In Russian)

    Google Scholar 

  39. Van Zon, R., Schofield, J.: Event-driven dynamics of rigid bodies interacting via discretized potentials. J. Chem. Phys. 128, 154119 (2008)

    Article  ADS  Google Scholar 

  40. Ivanova, E.A., Krivtsov, A.M., Morozov, N.F., Firsova, A.D.: Inclusion of the moment interaction in the calculation of the flexural rigidity of nanostructures. Dokl. Phys. 48(8), 455–458 (2003)

    Article  ADS  Google Scholar 

  41. Byzov, A.P., Ivanova, E.A.: Mathematical modelling of the moment interactions of particles with rotary degrees of freedom. In: Scientific and Technical Sheets of St. Petersburg State Technical University. No. 2, pp. 260–268 (2007). (In Russian)

    Google Scholar 

  42. Zhilin, P.A.: Rigid Body Dynamics. Polytechnic University Publishing House, St. Petersburg (2015). (In Russian)

    Google Scholar 

  43. Altenbach, H., Maugin, G.A., Erofeev, V. (eds.): Mechanics of Generalized Continua. Springer, Berlin (2011)

    MATH  Google Scholar 

  44. Altenbach, H., Forest, S., Krivtsov, A. (eds.): Generalized Continua as Models for Materials with Multi-scale Effects or Under Multi-field Actions. Springer, Berlin (2013)

    Google Scholar 

  45. Altenbach, H., Forest, S. (eds.): Generalized Continua as Models for Classical and Advanced Materials. Springer, Berlin (2016)

    Google Scholar 

  46. Zhilin, P.A.: Rigid body oscillator: a general model and some results. Acta Mech. 142, 169–193 (2000)

    Article  Google Scholar 

  47. Zhilin, P.A.: A new approach to the analysis of free rotations of rigid bodies. Z. Angew. Math. Mech. 76(4), 187–204 (1996)

    Article  MathSciNet  Google Scholar 

  48. Zhilin, P.A.: Rotations of rigid body with small angles of nutation. Z. Angew. Math. Mech. 76(2), 711–712 (1996)

    MathSciNet  MATH  Google Scholar 

  49. Zhilin, P.A., Sorokin, S.A.: The motion of gyrostat on nonlinear elastic foundation. Z. Angew. Math. Mech. 78(2), 837–838 (1998)

    MATH  Google Scholar 

  50. Zhilin, P.A.: Dynamics of the two rotors gyrostat on a nonlinear elastic foundation. Z. Angew. Math. Mech. 79(2), 399–400 (1999)

    Google Scholar 

  51. Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2(1), 197–226 (1958)

    Article  MathSciNet  Google Scholar 

  52. Grekova, E.F., Maugin, G.A.: Modelling of complex elastic crystals by means of multi-spin micromorphic media. Int. J. Eng. Sci. 43(5), 494–519 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is deeply grateful to A.K. Belyaev and V.A. Kuzkin for useful discussions on the paper.

This work was supported by Ministry of Education and Science of the Russian Federation within the framework of the Federal Program “Research and development in priority areas for the development of the scientific and technological complex of Russia for 2014–2020” (activity 1.2), grant No. 14.575.21.0146 of September 26, 2017, unique identifier: RFMEFI57517X0146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Ivanova.

Appendices

Appendix A: Tensor Methods in the Kinematics of Spinorial Motion

There exist various approaches to describe spinorial (rotational) motion. Further, we employ an approach based on tensor calculus. An advantage of tensor methods is that they are compatible with continuum mechanics methods. Employing tensor methods for discrete systems, we can, firstly, transform discrete systems into their continuous versions with comparative ease, and secondly, efficiently use methods that are developed in continuum mechanics.

Definition

Tensor \(\mathbf{P}\) is called the rotation tensor if it is a proper orthogonal tensor, i.e., it satisfies the equations

$$ \mathbf{P} \boldsymbol{\cdot } \mathbf{P}^{T} = \mathbf{P}^{T} \boldsymbol{\cdot } \mathbf{P} = \mathbf{E}, \qquad \mathrm{det}\, \mathbf{P} = 1, $$
(165)

where \(\mathbf{E}\) is the unit tensor. In accordance with Euler’s theorem, the rotation tensor can be represented as

$$ \mathbf{P}(\theta \mathbf{m}) = \bigl[1 - \cos \theta (t)\bigr] \, \mathbf{m}(t) \mathbf{m}(t) + \cos \theta (t)\, \mathbf{E} + \sin \theta (t)\, \mathbf{m}(t) \times \mathbf{E}, $$
(166)

where \(\theta (t)\) is the rotation angle, \(\mathbf{m}(t)\) is the unit vector directed along the axis of rotation. Euler’s representation (166) is convenient in the case of rotation about a fixed axis. If \(\mathbf{m} \neq {\mathrm{const}}\), then it is more convenient to introduce the rotation vector \(\boldsymbol{\theta }(t) = \theta (t) \, \mathbf{m}(t)\) and to use Zhilin’s representation for the rotation tensor [42, 46]:

$$ \mathbf{P}({\boldsymbol{\theta }}) = \mathbf{E} + \frac{\sin \theta }{ \theta }\,\mathbf{R}(t) + \frac{1 - \cos \theta }{\theta ^{2}}\, \mathbf{R}^{2}, \qquad \mathbf{R} = \boldsymbol{\theta }(t) \times \mathbf{E}, \quad \theta = | \boldsymbol{\theta }|. $$
(167)

The antisymmetric tensor \(\mathbf{R}\) is called the logarithmic rotation tensor. This name is due to the fact that tensor \(\mathbf{R}( \boldsymbol{\theta })\) is related to the rotation tensor \(\mathbf{P}( \boldsymbol{\theta })\) as \(\mathbf{P}(\boldsymbol{\theta }) = \exp \mathbf{R}(\boldsymbol{\theta })\).

Definition

The angular velocity vector is defined by the following formulas which are equivalent to each other:

$$ \dot{\mathbf{P}}(t) = \boldsymbol{\omega }(t) \times \mathbf{P}(t), \qquad \boldsymbol{\omega }(t) = - \frac{1}{2} \bigl( \dot{ \mathbf{P}}(t) \boldsymbol{\cdot } \mathbf{P}^{T}(t) \bigr) _{\times }, $$
(168)

where \((\mathbf{a} \mathbf{b})_{\times } \equiv \mathbf{a} \times \mathbf{b}\). The first formula in Eq. (168) represents one of the formulations of Poisson’s equation. The second formula in Eq. (168) expresses the fact that the angular velocity vector is the accompanying vector of the spin tensor. The derivative of the rotation vector \(\boldsymbol{\theta }\) and the angular velocity vector \(\boldsymbol{\omega }\) are related as

$$ \dot{\boldsymbol{\theta }} = \mathbf{Z}(\boldsymbol{\theta }) \cdot \boldsymbol{\omega }, $$
(169)

where \(\mathbf{Z}(\boldsymbol{\theta })\) is the Zhilin tensor. It can be expressed in terms of the rotation tensor by the formula given in [42, 46]:

$$ \mathbf{Z}(\boldsymbol{\theta }) = \mathbf{E} - \frac{1}{2}\, \mathbf{R} + \frac{1 - g(\theta )}{\theta ^{2}}\,\mathbf{R}^{2}, \qquad g(\theta ) = \frac{\theta \, \sin \theta }{2(1 - \cos \theta )} , \quad \theta = |\boldsymbol{\theta }|. $$
(170)

In [46] it is proved that the Zhilin tensor possesses the following properties:

$$ \mathbf{Z}^{T}(\boldsymbol{\theta }) = \mathbf{P}( \boldsymbol{\theta }) \cdot \mathbf{Z}(\boldsymbol{\theta }) = \mathbf{Z}( \boldsymbol{\theta }) \cdot \mathbf{P}( \boldsymbol{\theta }), \qquad \boldsymbol{ \theta } \cdot \mathbf{Z}( \boldsymbol{\theta }) = \mathbf{Z}(\boldsymbol{\theta }) \cdot \boldsymbol{\theta } = \boldsymbol{\theta }. $$
(171)

In [46] it is also proved that the determinant of \(\mathbf{Z}(\boldsymbol{\theta })\) is not equal to zero (with the exception of the singular points \(\theta = 2 \pi k\), where \(k\) is integer), and the inverse tensor is

$$ \mathbf{Z}^{-1}(\boldsymbol{\theta }) = \mathbf{E} + \frac{1 - \cos \theta }{\theta ^{2}}\,\mathbf{R} + \frac{\theta - \sin \theta }{\theta ^{3}}\,\mathbf{R}^{2}. $$
(172)

The inverse Zhilin tensor possesses the properties similar to (171):

$$ \mathbf{Z}^{-T}(\boldsymbol{\theta }) = \mathbf{P}^{T}( \boldsymbol{\theta }) \cdot \mathbf{Z}^{-1}( \boldsymbol{\theta }) = \mathbf{Z}^{-1}(\boldsymbol{\theta }) \cdot \mathbf{P}^{T}( \boldsymbol{\theta }), \qquad \boldsymbol{\theta } \cdot \mathbf{Z} ^{-1}(\boldsymbol{\theta }) = \mathbf{Z}^{-1}( \boldsymbol{\theta }) \cdot \boldsymbol{\theta } = \boldsymbol{\theta }. $$
(173)

Now we consider the behavior of tensors \(\mathbf{Z}( \boldsymbol{\theta })\) and \(\mathbf{Z}^{-1}(\boldsymbol{\theta })\) nearby the point \(\theta = 0\). Expanding the functions \(\sin \theta \) and \(\cos \theta \) into series and retaining the terms of the second order of smallness yields

$$ \mathbf{Z}(\boldsymbol{\theta }) \approx \mathbf{E} - \frac{1}{2}\, \mathbf{R} + \frac{1}{12}\,\mathbf{R}^{2}, \qquad \mathbf{Z}^{-1}( \boldsymbol{\theta }) \approx \mathbf{E} + \frac{1}{2}\,\mathbf{R} + \frac{1}{6}\,\mathbf{R}^{2}. $$
(174)

Thus, the point \(\theta = 0\) is not a singular point of tensors \(\mathbf{Z}(\boldsymbol{\theta })\) and \(\mathbf{Z}^{-1}( \boldsymbol{\theta })\). However, the exact formulas (170), (172) contain the indeterminate form of type \(0/0\). Therefore, for numerical calculations nearby the point \(\theta = 0\), it is preferable to use the approximate formulas (174).

Next, we consider the behavior of tensors \(\mathbf{Z}( \boldsymbol{\theta })\) and \(\mathbf{Z}^{-1}(\boldsymbol{\theta })\) nearby the point \(\theta = 2 \pi \). Putting \(\theta = 2 \pi - \epsilon \), where \(\epsilon \ll 1\), and expanding the functions \(\sin \theta \) and \(\cos \theta \) into series yields the following approximate expressions for tensors \(\mathbf{Z}(\boldsymbol{\theta })\) and \(\mathbf{Z}^{-1}(\boldsymbol{\theta })\):

$$ \mathbf{Z}(\boldsymbol{\theta }) \approx \mathbf{E} - \frac{1}{2}\, \mathbf{R} + \frac{1}{2 \pi \epsilon }\,\mathbf{R}^{2}, \qquad \mathbf{Z}^{-1}(\boldsymbol{\theta }) \approx - \frac{\epsilon }{2 \pi } \,\mathbf{E} + \frac{\epsilon ^{2}}{8 \pi ^{2}}\,\mathbf{R} + \frac{1}{ \theta ^{2}}\,\boldsymbol{ \theta } \boldsymbol{\theta }. $$
(175)

It is easy to see that the point \(\theta = 2 \pi \) is the singular point of tensor \(\mathbf{Z}(\boldsymbol{\theta })\), and it is not a singular point for tensor \(\mathbf{Z}^{-1}(\boldsymbol{\theta })\). That is why to find a relation between the derivative of the rotation tensor \(\boldsymbol{\theta }\) and the angular velocity vector \(\boldsymbol{\omega }\), we should use rather the equation

$$ \boldsymbol{\omega } = \mathbf{Z}^{-1}(\boldsymbol{ \theta }) \cdot \dot{\boldsymbol{\theta }}, $$
(176)

than Eq. (169). Substituting the second formula in Eq. (175) into Eq. (176) yields

$$ \boldsymbol{\omega } \approx \frac{\dot{\theta }}{2 \pi }\, \boldsymbol{ \theta } + \frac{\epsilon }{2 \pi } \biggl(\frac{ \dot{\theta }}{2 \pi }\,\boldsymbol{\theta } - \dot{\boldsymbol{\theta }} \biggr) + \frac{\epsilon ^{2}}{8 \pi ^{2}}\, \boldsymbol{\theta } \times \dot{\boldsymbol{\theta }} = \frac{ \dot{\theta }}{2 \pi }\,\boldsymbol{\theta } + O( \epsilon ). $$
(177)

Thus, when the magnitude of the rotation vector approaches the value \(2 \pi \), the direction of the angular velocity vector \(\boldsymbol{\omega }\) tends to the direction of the rotation vector \(\boldsymbol{\theta }\). Since \(\mathbf{R} \cdot \boldsymbol{\theta } = \mathbf{0}\), the term \({ \frac{1}{2 \pi \epsilon }\,\mathbf{R}^{2} \cdot \boldsymbol{\omega }}\) in the formula \(\dot{\boldsymbol{\theta }} = \mathbf{Z}( \boldsymbol{\theta }) \cdot \boldsymbol{\omega }\) is a finite quantity in spite of the presence of a small quantity in the denominator of the fraction. We note that solving the differential equations numerically it is not necessary to use the approximate formulas for tensors \(\mathbf{Z}(\boldsymbol{\theta })\) and \(\mathbf{Z}^{-1}( \boldsymbol{\theta })\) nearby the point \(\theta = 2 \pi \).

The description of spinorial (rotational) motion that is based on using the rotation vector is quite convenient for deriving the constitutive equations in the case of an elastic interaction of particles. Nevertheless, another representation for the rotation tensor, namely, a representation in the form of a composition of an arbitrary number of the rotation tensors

$$ \mathbf{P} = \mathbf{P}_{n} \cdot \cdots \cdot \mathbf{P}_{2} \cdot \mathbf{P}_{1} $$
(178)

is used further. The so-called rule of quasipermutability takes place for any two rotation tensors. This rule is expressed by the following formulas [42, 47]:

$$ \mathbf{P}_{2}(\psi \mathbf{m}) \cdot \mathbf{P}_{1}(\varphi \mathbf{n}) = \mathbf{P}_{1}\bigl( \varphi \mathbf{n}'\bigr) \cdot \mathbf{P} _{2}(\psi \mathbf{m}), \quad \mathbf{n}' = \mathbf{P}_{2}(\psi \mathbf{m}) \cdot \mathbf{n}. $$
(179)

If the rotation tensor is represented as a composition of the rotation tensors, then the angular velocity vector is calculated in accordance with the sum rule for the angular velocities [42, 47]:

$$ \mathbf{P} = \mathbf{P}_{2} \cdot \mathbf{P}_{1} \quad \Longrightarrow \quad \boldsymbol{\omega } = \boldsymbol{\omega }_{2} + \mathbf{P} _{2} \cdot \boldsymbol{\omega }_{1}. $$
(180)

Appendix B: Balance Equations in Eulerian Mechanics

Below we give particular formulations of the balance equations applicable to bodies that are assumed to be closed (not exchanging mass with their surroundings) and isolated (not exchanging energy with their surroundings).

The linear momentum balance equation. The rate of change of the body \(\mathscr{A}\) linear momentum is equal to the force vector acting on the body from its surroundings \(\mathscr{A}^{e}\):

$$ \dot{\mathbf{K}}_{1}(\mathscr{A}) = \mathbf{F}\bigl( \mathscr{A}, \mathscr{A}^{e}\bigr). $$
(181)

The angular momentum balance equation. The rate of change of the body \(\mathscr{A}\) angular momentum calculated relative to the reference point \(Q\) is equal to the moment vector acting on the body from its surroundings \(\mathscr{A}^{e}\) calculated relative to the same reference point \(Q\):

$$ \dot{\mathbf{K}}_{2}^{Q}(\mathscr{A}) = \mathbf{M}^{Q}\bigl(\mathscr{A}, \mathscr{A}^{e}\bigr). $$
(182)

If the body \(\mathscr{A}\) consists of body-points \(\mathscr{A}_{i}\) then its angular momentum is calculated as

$$ \mathbf{K}_{2}^{Q}(\mathscr{A}) = \sum _{i} \bigl[ ( \mathbf{r} _{i} - \mathbf{r}_{Q} ) \times \mathbf{K}_{1}(\mathscr{A}_{i}) + \mathbf{K}_{2}(\mathscr{A}_{i}) \bigr], $$
(183)

where the position vector \(\mathbf{r}_{i}\) identifies the current position of the body-point with number \(i\) and the position vector \(\mathbf{r}_{Q}\) identifies the position of the reference point \(Q\). The external moment \(\mathbf{M}^{Q}(\mathscr{A},\mathscr{A}^{e})\), by definition, is

$$ \mathbf{M}^{Q}\bigl(\mathscr{A},\mathscr{A}^{e} \bigr) = \sum_{i} \bigl[ ( \mathbf{r}_{P_{i}} - \mathbf{r}_{Q} ) \times \mathbf{F}\bigl( \mathscr{A}_{i}, \mathscr{A}^{e}\bigr) + \mathbf{L}^{P_{i}}\bigl( \mathscr{A}_{i}, \mathscr{A}^{e}\bigr) \bigr]. $$
(184)

Here \(( \mathbf{r}_{P_{i}} - \mathbf{r}_{Q} ) \times \mathbf{F}(\mathscr{A}_{i},\mathscr{A}^{e})\) is the moment of force, \(\mathbf{L}^{P_{i}}(\mathscr{A}_{i},\mathscr{A}^{e})\) is the proper moment calculated relative to the datum point \(P_{i}\), which position is identified by the position vector \(\mathbf{r}_{P_{i}}\). The datum point can be moving and for each body-point it can be chosen arbitrary and independently of the choice of the datum points of other body-points forming the body \(\mathscr{A}\).

The energy balance equation. The rate of change of the body \(\mathscr{A}\) total energy is equal to the power of external actions \(N(\mathscr{A},\mathscr{A}^{e})\):

$$ \dot{E}(\mathscr{A}) = N\bigl(\mathscr{A},\mathscr{A}^{e} \bigr). $$
(185)

The total energy of the body \(\mathscr{A}\) is the sum of its kinetic and internal energies: \(E(\mathscr{A}) = K(\mathscr{A}) + U(\mathscr{A})\). If the body \(\mathscr{A}\) consists of body-points \(\mathscr{A}_{i}\) then the power of external actions, by definition, is calculated as the bilinear form of velocities and external actions, namely

$$ N\bigl(\mathscr{A},\mathscr{A}^{e}\bigr) = \sum _{i} \bigl[\mathbf{F}\bigl( \mathscr{A}_{i}, \mathscr{A}^{e}\bigr) \boldsymbol{\cdot } \mathbf{v}_{i} + \mathbf{L}\bigl(\mathscr{A}_{i},\mathscr{A}^{e}\bigr) \boldsymbol{\cdot } \boldsymbol{\omega }_{i} \bigr]. $$
(186)

In Newtonian mechanics, the linear momentum balance equation, the angular momentum balance equation and the energy balance equation for a system of mass points follow from the second and third Newton laws. In Eulerian mechanics, the said balance equations are formulated as the laws that are true for arbitrary bodies. That is why in Eulerian mechanics, there is no necessity to accept any additional postulates like the third Newton law. In Eulerian mechanics, the third Newton law for force vectors and its analogue for moment vectors follow from the linear momentum balance equation and the angular momentum balance equation, respectively.

Appendix C: The Frame Indifference

Now we briefly discuss the question of frame indifference of the reduced energy balance equations (14), (15) and (20) with respect to any time-dependent reference frame. First of all, in addition to the inertial reference frame that is used to formulate all balance equations, we introduce a new reference frame arbitrary moving relative the given reference frame. A location of the new reference frame origin in the given reference frame is determined by the position vector \(\mathbf{r}_{O}(t)\). An orientation of the new reference frame relative to the given reference frame is determined by the rotation tensor \(\mathbf{Q}(t)\). The corresponding translational and angular velocities are calculated as

$$ \mathbf{v}_{O}(t) = \dot{\mathbf{r}}_{O}(t), \qquad \dot{\mathbf{Q}}(t) = \boldsymbol{\omega }_{Q}(t) \times \mathbf{Q}(t). $$
(187)

Next, we denote the characteristics of motion of the considered body-points in the new reference frame as \(\tilde{\mathbf{r}}_{i}\), \(\tilde{\mathbf{v}}_{i}\), \(\tilde{\mathbf{P}}_{i}\), \(\tilde{\boldsymbol{\omega }}_{i}\) where \(i=1,2\). It is well known formulas relating the characteristics of motion in two different reference frames:

$$ \textstyle\begin{array}{l} \mathbf{r}_{i} = \mathbf{r}_{O} + \mathbf{Q} \boldsymbol{\cdot } \tilde{\mathbf{r}}_{i}, \qquad \mathbf{v}_{i} = \mathbf{v}_{O} + \boldsymbol{\omega }_{Q} \times \mathbf{Q} \boldsymbol{\cdot } \tilde{\mathbf{r}}_{i} + \mathbf{Q} \boldsymbol{\cdot } \tilde{\mathbf{v}}_{i}, \qquad \tilde{\mathbf{v}}_{i} = \dot{\tilde{\mathbf{r}}}_{i}, \\ \mathbf{P}_{i} = \mathbf{Q} \boldsymbol{\cdot } \tilde{\mathbf{P}} _{i}, \qquad \boldsymbol{\omega }_{i} = \boldsymbol{\omega }_{Q} + \mathbf{Q} \boldsymbol{\cdot } \tilde{\boldsymbol{\omega }}_{i}, \qquad \dot{\tilde{\mathbf{P}}}_{i} = \tilde{\boldsymbol{\omega }}_{i} \times \tilde{\mathbf{P}}_{i}, \quad i = 1,2. \end{array} $$
(188)

From Eq. (188) it follows

$$ \textstyle\begin{array}{l} { \displaystyle \mathbf{r} = \mathbf{Q} \boldsymbol{\cdot } \tilde{\mathbf{r}}, \qquad \tilde{\mathbf{r}} = \tilde{\mathbf{r}}_{2} - \tilde{\mathbf{r}}_{1}, \qquad \boldsymbol{\omega }_{2} - \boldsymbol{\omega }_{1} = \mathbf{Q} \boldsymbol{\cdot } ( \tilde{\boldsymbol{\omega }}_{2} - \tilde{\boldsymbol{\omega }}_{1}),} \\ { \displaystyle \dot{\mathbf{r}} - \frac{1}{2} (\boldsymbol{\omega }_{1} + \boldsymbol{\omega }_{2}) \times \mathbf{r} = \mathbf{Q} \boldsymbol{\cdot } \biggl[ \dot{\tilde{\mathbf{r}}} - \frac{1}{2} ( \tilde{\boldsymbol{\omega }}_{1} + \tilde{\boldsymbol{\omega }}_{2}) \times \tilde{\mathbf{r}} \biggr].} \end{array} $$
(189)

Substituting Eq. (189) into Eq. (14), we obtain

$$ \dot{U} = \tilde{\mathbf{F}} \boldsymbol{\cdot } \biggl[ \dot{ \tilde{\mathbf{r}}} - \frac{1}{2} (\tilde{\boldsymbol{\omega }} _{1} + \tilde{\boldsymbol{\omega }}_{2}) \times \tilde{ \mathbf{r}} \biggr] + \tilde{\mathbf{M}} \boldsymbol{\cdot } ( \tilde{\boldsymbol{ \omega }}_{2} - \tilde{\boldsymbol{\omega }}_{1}), $$
(190)

where force vector \(\tilde{\mathbf{F}}\) and moment vector \(\tilde{\mathbf{M}}\) are related to vectors \(\mathbf{F}\) and \(\mathbf{M}\) as

$$ \mathbf{F} = \mathbf{Q} \boldsymbol{\cdot } \tilde{\mathbf{F}}, \qquad \mathbf{M} = \mathbf{Q} \boldsymbol{\cdot } \tilde{\mathbf{M}}. $$
(191)

It is well known that Eq. (191) expresses the frame indifference or, that is the same thing, the material objectivity principle [51]. It is easy to see that Eq. (191) has the exactly same form as Eq. (14). Thus, if the force and moment vectors satisfy the material objectivity principle then the reduced energy balance equation (14) possesses the property of frame indifference and vice versa. It means that if a definition of strain measures are based on Eq. (14) then the strain measures will satisfy the material objectivity principle and the corresponding constitutive equations will possess the property of frame indifference. It is not difficult to show that the aforesaid is also true in relation to Eqs. (15) and (20).

Appendix D: Relations Between Stiffness Characteristics in the Linear Theory

Taking into account Eqs. (33), (40), (42), it is not difficult to show that the stiffness characteristics \(C_{\varepsilon }\), \(C_{\varepsilon \varPhi }\), \(C_{\varPhi }\), \(\mathbf{C}_{\varepsilon 1}\), \(\mathbf{C}_{\varepsilon 2}\), \(\mathbf{C}_{\varPhi 1}\), \(\mathbf{C}_{\varPhi 2}\), \(\mathbf{C}_{\chi 1}\), \(\mathbf{C}_{\chi \chi }\), \(\mathbf{C}_{\chi 2}\) relate to the stiffness tensors \(\hat{\mathbf{C}}_{1}\), \(\hat{\mathbf{C}}_{2}\), \(\hat{\mathbf{C}}_{3}\) by the formulas

$$ \textstyle\begin{array}{l} C_{\varepsilon }= \mathbf{e}_{0} \boldsymbol{\cdot } \hat{\mathbf{C}} _{1} \boldsymbol{\cdot } \mathbf{e}_{0}, \qquad C_{\varepsilon \varPhi } = \mathbf{e}_{0} \boldsymbol{\cdot } \hat{\mathbf{C}}_{2} \boldsymbol{\cdot } \mathbf{e}_{0}, \qquad C_{\varPhi }= \mathbf{e}_{0} \boldsymbol{\cdot } \hat{\mathbf{C}}_{3} \boldsymbol{\cdot } \mathbf{e}_{0}, \\ \mathbf{C}_{\varepsilon 1} = \mathbf{e}_{0} \boldsymbol{\cdot } \hat{\mathbf{C}}_{1} \boldsymbol{\cdot } (\mathbf{E} - \mathbf{e}_{0} \mathbf{e}_{0}), \qquad \mathbf{C}_{\varepsilon 2} = \mathbf{r}_{0} \times \hat{\mathbf{C}}_{1} \boldsymbol{\cdot } \mathbf{e}_{0} - \mathbf{e}_{0} \boldsymbol{\cdot } \hat{\mathbf{C}}_{2} \boldsymbol{\cdot } (\mathbf{E} - \mathbf{e}_{0} \mathbf{e}_{0}), \\ \mathbf{C}_{\varPhi 1} = (\mathbf{E} - \mathbf{e}_{0} \mathbf{e}_{0}) \boldsymbol{\cdot } \hat{\mathbf{C}}_{3} \boldsymbol{\cdot } \mathbf{e}_{0}, \qquad \mathbf{C}_{\varPhi 2} = \mathbf{r}_{0} \times \hat{\mathbf{C}}_{2} \boldsymbol{\cdot } \mathbf{e}_{0} - (\mathbf{E} - \mathbf{e}_{0} \mathbf{e}_{0}) \boldsymbol{\cdot } \hat{\mathbf{C}} _{2} \boldsymbol{\cdot } \mathbf{e}_{0}, \\ \mathbf{C}_{\chi 1} = (\mathbf{E} - \mathbf{e}_{0} \mathbf{e}_{0}) \boldsymbol{\cdot } \hat{\mathbf{C}}_{3} \boldsymbol{\cdot } ( \mathbf{E} - \mathbf{e}_{0} \mathbf{e}_{0}), \\ \mathbf{C}_{\chi \chi } = \mathbf{r}_{0} \times \hat{\mathbf{C}}_{2} \boldsymbol{\cdot } (\mathbf{E} - \mathbf{e}_{0} \mathbf{e}_{0}) - ( \mathbf{E} - \mathbf{e}_{0} \mathbf{e}_{0}) \boldsymbol{\cdot } \hat{\mathbf{C}}_{3} \boldsymbol{\cdot } (\mathbf{E} - \mathbf{e}_{0} \mathbf{e}_{0}), \\ \mathbf{C}_{\chi 2} = - \mathbf{r}_{0} \times \hat{\mathbf{C}}_{1} \times \mathbf{r}_{0} - 2\, \mathbf{r}_{0} \times \hat{\mathbf{C}} _{2} \boldsymbol{\cdot } (\mathbf{E} - \mathbf{e}_{0} \mathbf{e}_{0}) + (\mathbf{E} - \mathbf{e}_{0} \mathbf{e}_{0}) \boldsymbol{\cdot } \hat{\mathbf{C}}_{3} \boldsymbol{\cdot } (\mathbf{E} - \mathbf{e}_{0} \mathbf{e}_{0}). \end{array} $$
(192)

Appendix E: The Moment Vector in the Case of Transversely Isotropic Potential

In the case of transversely isotropic interaction potential, the moment vector \(\mathbf{M}\), which corresponds to the energetic moment vector \(\mathbf{M}_{*}\) given by Eq. (81), is calculated as

$$\begin{aligned} \mathbf{M} =& \biggl[ 2 \frac{\partial U(\varPhi ^{2}, \mathbf{k} \boldsymbol{\cdot } \boldsymbol{\varPhi })}{\partial \varPhi ^{2}} + \frac{ \partial U(\varPhi ^{2}, \mathbf{k} \boldsymbol{\cdot } \boldsymbol{\varPhi })}{\partial (\mathbf{k} \boldsymbol{\cdot } \boldsymbol{\varPhi })} \frac{2 (1 - \cos \varPhi ) - \varPhi \sin \varPhi }{2 \varPhi ^{2} (1 - \cos \varPhi )} (\mathbf{k} \boldsymbol{\cdot } \boldsymbol{\varPhi }) \biggr] \! (\mathbf{P}_{1} \boldsymbol{\cdot } \boldsymbol{\varPhi }) \\ &{}+ \frac{\partial U(\varPhi ^{2}, \mathbf{k} \boldsymbol{\cdot } \boldsymbol{\varPhi })}{\partial (\mathbf{k} \boldsymbol{\cdot } \boldsymbol{\varPhi })} \biggl[ \frac{\varPhi \sin \varPhi }{2(1 - \cos \varPhi )}\, (\mathbf{P}_{1} \boldsymbol{\cdot } \mathbf{k}) + \frac{1}{2}\, (\mathbf{P}_{1} \boldsymbol{\cdot } \boldsymbol{\varPhi }) \times (\mathbf{P}_{1} \boldsymbol{\cdot } \mathbf{k}) \biggr] \\ \equiv& \biggl[ 2 \frac{\partial U(\varPhi ^{2}, \mathbf{k} \boldsymbol{\cdot } \boldsymbol{\varPhi })}{\partial \varPhi ^{2}} + \frac{ \partial U(\varPhi ^{2}, \mathbf{k} \boldsymbol{\cdot } \boldsymbol{\varPhi })}{\partial (\mathbf{k} \boldsymbol{\cdot } \boldsymbol{\varPhi })} \frac{2 (1 - \cos \varPhi ) - \varPhi \sin \varPhi }{2 \varPhi ^{2} (1 - \cos \varPhi )} (\mathbf{k} \boldsymbol{\cdot } \boldsymbol{\varPhi }) \biggr] (\mathbf{P}_{2} \boldsymbol{\cdot } \boldsymbol{\varPhi }) \\ &{} + \frac{\partial U(\varPhi ^{2}, \mathbf{k} \boldsymbol{\cdot } \boldsymbol{\varPhi })}{\partial (\mathbf{k} \boldsymbol{\cdot } \boldsymbol{\varPhi })} \biggl[ \frac{\varPhi \sin \varPhi }{2(1 - \cos \varPhi )}\, (\mathbf{P}_{2} \boldsymbol{\cdot } \mathbf{k}) - \frac{1}{2}\, (\mathbf{P}_{2} \boldsymbol{\cdot } \boldsymbol{\varPhi }) \times (\mathbf{P}_{2} \boldsymbol{\cdot } \mathbf{k}) \biggr] . \end{aligned}$$
(193)

It is easy to see that, in the case of transversely isotropic interaction potential, \(|\mathbf{M}| \neq |\mathbf{M}_{*}|\) and the direction of the moment vector \(\mathbf{M}\) depends on the relative rotation vector \(\boldsymbol{\varPhi }\) in non-obvious way.

Appendix F: The Interaction of Dipoles

Two identical rigid dipoles of length \(l\) are considered. (Here the term “dipole” means two close rigidly connected mass points.) In the reference configuration, the dipole centers are on the axis \(z\), and the dipoles are oriented along the axis \(z\). The interaction of the mass points belonging to the different dipoles is described by the Lennard–Jones potential.

First of all, we consider the case of purely moment interactions. Using the procedure described in Sect. 5.4, we obtain the dipole interaction potential with an asymptotic error of order \(O(l^{3})\):

$$\begin{aligned} U(r, \boldsymbol{\varPhi }) =& - D \biggl[ \biggl( \frac{r_{0}}{r} \biggr) ^{12}-2 \biggl( \frac{r_{0}}{r} \biggr) ^{6} \biggr] + \frac{3 D l ^{2}}{r^{2}} \biggl[ \biggl( \frac{r_{0}}{r} \biggr) ^{12} - \biggl( \frac{r _{0}}{r} \biggr) ^{6} \biggr] \\ &{} - \frac{3 D l^{2}}{2 r^{2}} \biggl[ 7 \biggl( \frac{r_{0}}{r} \biggr) ^{12}-4 \biggl( \frac{r_{0}}{r} \biggr) ^{6} \biggr] \biggl( 4 \frac{ \varPhi _{z}^{2}}{\varPhi ^{2}} \biggl[ 1 + \biggl( 1 - \frac{\varPhi _{z}^{2}}{ \varPhi ^{2}} \biggr) \cos \varPhi \biggr] \\ &{} + \biggl( 1 - \frac{\varPhi _{z} ^{2}}{\varPhi ^{2}} \biggr) ^{2} \bigl[3 + \cos (2 \varPhi ) \bigr] \biggr) . \end{aligned}$$
(194)

Here \(D\) and \(r_{0}\) are the parameters of the Lennard–Jones potential. It is easy to show that the point \(\varPhi = 0\) is not a singular point of potential (194). Indeed, expanding the functions \(\cos \varPhi \) and \(\cos (2 \varPhi )\) into series near the point \(\varPhi = 0\), after simple transformations we obtain the following approximate expression

$$\begin{aligned} U(r, \boldsymbol{\varPhi }) \approx& - D \biggl[ \biggl( \frac{r_{0}}{r} \biggr) ^{12} -2 \biggl( \frac{r_{0}}{r} \biggr) ^{6} \biggr] + \frac{3 D l^{2}}{r^{2}} \biggl[ \biggl( \frac{r_{0}}{r} \biggr) ^{12} - \biggl( \frac{r_{0}}{r} \biggr) ^{6} \biggr] \\ &{} - \frac{3 D l^{2}}{r^{2}} \biggl[ 7 \biggl( \frac{r_{0}}{r} \biggr) ^{12}-4 \biggl( \frac{r_{0}}{r} \biggr) ^{6} \biggr] \bigl( 2 - \varPhi ^{2} + \varPhi _{z}^{2} \bigr), \end{aligned}$$
(195)

which is the asymptotically dominant term of potential (194).

The extension of the obtained results to the case of the overall motion (including both the spinorial motion and the translational one) is not difficult. That is why we give only the final form of the interaction potential \(U(\boldsymbol{\varepsilon }_{1}, \boldsymbol{\varPhi }_{1})\), without considering the details of their derivation:

$$\begin{aligned} U(\boldsymbol{\varepsilon }_{1}, \boldsymbol{\varPhi }_{1}) =& - D \biggl[ \biggl( \frac{r_{0}}{\varepsilon _{1}} \biggr) ^{12} -2 \biggl( \frac{r _{0}}{\varepsilon _{1}} \biggr) ^{6} \biggr] + \frac{3 D l^{2}}{ \varepsilon _{1}^{2}} \biggl[ \biggl( \frac{r_{0}}{\varepsilon _{1}} \biggr) ^{12} - \biggl( \frac{r_{0}}{ \varepsilon _{1}} \biggr) ^{6} \biggr] \\ &{} - \frac{3 D l^{2}}{\varepsilon _{1}^{4}} \biggl[ 7 \biggl( \frac{r_{0}}{ \varepsilon _{1}} \biggr) ^{12} -4 \biggl( \frac{r_{0}}{\varepsilon _{1}} \biggr) ^{6} \biggr] \bigl\{ \bigl( \mathbf{k} \cdot \tilde{\mathbf{P}}(\boldsymbol{\varPhi }_{1}) \cdot \boldsymbol{\varepsilon }_{1} \bigr) ^{2} + ( \mathbf{k} \cdot \boldsymbol{\varepsilon }_{1} ) ^{2} \bigr\} , \end{aligned}$$
(196)

where

$$ \tilde{\mathbf{P}}(\boldsymbol{\varPhi }_{1}) \cdot \boldsymbol{\varepsilon }_{1} = \cos \varPhi _{1}\, \boldsymbol{\varepsilon }_{1} + \frac{\sin \varPhi _{1}}{\varPhi _{1}}\, \boldsymbol{ \varPhi }_{1} \times \boldsymbol{\varepsilon }_{1} + \frac{1 - \cos \varPhi _{1}}{\varPhi _{1}^{2}}\,(\boldsymbol{\varPhi }_{1} \cdot \boldsymbol{ \varepsilon }_{1})\, \boldsymbol{\varPhi }_{1}, \quad \varepsilon _{1} = |\boldsymbol{\varepsilon }_{1}|, \ \varPhi _{1} = | \boldsymbol{\varPhi }_{1}|. $$
(197)

Potential (196) is a generalization of potential (194). The dipole interaction potential (196), as well as potential (194), is obtained with an asymptotic error of order \(O(l^{3})\) compared to the exact interaction potential of the dipoles. Taking into account Eq. (99), it is easy to show that

$$ \bigl( \mathbf{k} \cdot \tilde{\mathbf{P}}(\boldsymbol{\varPhi }_{1}) \cdot \boldsymbol{\varepsilon }_{1} \bigr) ^{2} = ( \mathbf{k} \cdot \boldsymbol{\varepsilon }_{2} ) ^{2}, \qquad ( \mathbf{k} \cdot \boldsymbol{\varepsilon }_{1} ) ^{2} = \bigl( \mathbf{k} \cdot \tilde{\mathbf{P}}( \boldsymbol{\varPhi }_{2}) \cdot \boldsymbol{\varepsilon }_{2} \bigr) ^{2}, \quad \varepsilon _{1} = \varepsilon _{2}. $$
(198)

Substituting Eq. (198) into Eq. (196) yields the dipole interaction potential \(U(\boldsymbol{\varepsilon }_{2}, \boldsymbol{\varPhi }_{2})\). It is obvious that potential \(U(\boldsymbol{\varepsilon }_{2}, \boldsymbol{\varPhi }_{2})\) has the same structure as potential (196), and it can be obtained from potential (196) by replacing \(\boldsymbol{\varepsilon }_{1}\) by \(\boldsymbol{\varepsilon }_{2}\) and \(\boldsymbol{\varPhi }_{1}\) by \(\boldsymbol{\varPhi }_{2}\). Moreover, it is obvious that \(\varepsilon _{2}\) and \(\tilde{\mathbf{P}}(\boldsymbol{\varPhi }_{2}) \cdot \boldsymbol{\varepsilon }_{2}\) are expressed in terms of vectors \(\boldsymbol{\varepsilon }_{2}\), \(\boldsymbol{\varPhi }_{2}\) by the formulas similar to Eq. (197).

Appendix G: The Interaction of Tetrahedrons

Two identical rectilinear tetrahedrons are considered. The size of the tetrahedron is specified by the distance \(a\) from the tetrahedron center to its vertex. The tetrahedrons are considered to be rigid and inertialess. There are mass points in the vertices of the tetrahedrons. In the reference configuration, the tetrahedron centers are on the axis \(z\), and the tetrahedrons are uniformly oriented in space. In the reference configuration, the orientation of the tetrahedrons is specified by unit vectors \(\mathbf{e}_{1}\), \(\mathbf{e}_{2}\), \(\mathbf{e}_{3}\), \(\mathbf{e}_{4}\), which point from the tetrahedron center to its vertices. These vectors are expressed in terms of basis vector of a rectangular coordinate system as follows:

$$ \textstyle\begin{array}{l} { \displaystyle \mathbf{e}_{1} = \frac{2 \sqrt{2}}{3}\, \mathbf{i} - \frac{1}{3}\, \mathbf{k}, \qquad \mathbf{e}_{2} = - \frac{\sqrt{2}}{3}\, \mathbf{i} + \frac{\sqrt{2}}{\sqrt{3}}\, \mathbf{j} - \frac{1}{3} \, \mathbf{k},} \\ { \displaystyle \mathbf{e}_{3} = - \frac{\sqrt{2}}{3}\, \mathbf{i} - \frac{ \sqrt{2}}{\sqrt{3}}\, \mathbf{j} - \frac{1}{3}\, \mathbf{k}, \qquad \mathbf{e}_{4} = \mathbf{k}.} \end{array} $$
(199)

The relative rotation vector \(\boldsymbol{\varPhi }\) can be represented by means of vectors \(\mathbf{e}_{1}\), \(\mathbf{e}_{2}\), \(\mathbf{e}_{3}\), \(\mathbf{e}_{4}\) as

$$ \textstyle\begin{array}{l} \displaystyle \boldsymbol{\varPhi } = \frac{3}{4} \bigl( \varPhi ^{(1)} \mathbf{e}_{1} + \varPhi ^{(2)} \mathbf{e}_{2} + \varPhi ^{(3)} \mathbf{e}_{3} + \varPhi _{z} \mathbf{k} \bigr) , \qquad \varPhi _{z} \equiv \varPhi ^{(4)}, \\ \displaystyle \varPhi ^{(4)} = - \bigl(\varPhi ^{(1)} + \varPhi ^{(2)} + \varPhi ^{(3)}\bigr), \qquad \varPhi ^{(i)} = \mathbf{e}_{i} \boldsymbol{\cdot } \boldsymbol{\varPhi }, \quad i = 1, 2,3,4. \end{array} $$
(200)

We assume that the interaction of the mass points belonging to the different tetrahedrons is described by the Lennard–Jones potential.

First of all, we consider purely moment interactions. In this case, using the procedure described in Sect. 5.4, we obtain the tetrahedron interaction potential with an asymptotic error of order \(O(a^{4})\):

$$\begin{aligned} U(r, \boldsymbol{\varPhi }) =& - D \biggl[ \biggl( \frac{r_{0}}{r} \biggr) ^{12} -2 \biggl( \frac{r_{0}}{r} \biggr) ^{6} \biggr] \\ &{} - \frac{4 D a^{2}}{r^{2}} \biggl[ 11 \biggl( \frac{r_{0}}{r} \biggr) ^{12} -5 \biggl( \frac{r_{0}}{r} \biggr) ^{6} \biggr] - \frac{32 D a^{3}}{r^{3}} \biggl[ 14 \biggl( \frac{r_{0}}{r} \biggr) ^{12} -5 \biggl( \frac{r_{0}}{r} \biggr) ^{6} \biggr] \\ &{} \times \biggl\{ \biggl( 1 - \frac{\varPhi _{z}^{2}}{\varPhi ^{2}} \biggr) \biggl[1 + \frac{5}{3}\, \frac{\varPhi _{z}^{4}}{\varPhi ^{4}} + \frac{10}{9} \biggl( 1 - \frac{\varPhi _{z}^{2}}{\varPhi ^{2}} \biggr) \biggl( 1 + 2 \frac{\varPhi _{z}^{2}}{\varPhi ^{2}} \biggr) \cos \varPhi \\ &{}+ \frac{5}{9} \biggl( 1 - \frac{\varPhi _{z}^{2}}{\varPhi ^{2}} \biggr) ^{\!2} \cos (2 \varPhi ) \biggr] - \frac{\varPhi _{z} (\varPhi _{z} + 3 \varPhi _{1}) (\varPhi _{z} + 3 \varPhi _{2}) (\varPhi _{z} + 3 \varPhi _{3})}{12\, \varPhi ^{4}} \\ &{}\times \biggl[1 - \frac{\varPhi _{z}^{2}}{\varPhi ^{2}} + \frac{4}{3}\,\frac{\varPhi _{z}^{2}}{\varPhi ^{2}} \cos \varPhi - \biggl( 1 + \frac{1}{3}\, \frac{\varPhi _{z}^{2}}{\varPhi ^{2}} \biggr) \cos (2 \varPhi ) \biggr] \\ &{} + \frac{(\varPhi _{1} - \varPhi _{2}) (\varPhi _{2} - \varPhi _{3}) (\varPhi _{3} - \varPhi _{1})}{2 \sqrt{3}\, \varPhi ^{3}} \biggl[ \biggl( 1 - 3\, \frac{\varPhi _{z}^{2}}{\varPhi ^{2}} \biggr) \sin \varPhi \\ &{}+ \frac{1}{2} \biggl( 1 + 3\, \frac{ \varPhi _{z}^{2}}{\varPhi ^{2}} \biggr) \sin (2 \varPhi ) \biggr] \biggr\} \sin ^{2} \biggl( \frac{\varPhi }{2} \biggr) . \end{aligned}$$
(201)

Expanding the trigonometric functions in Eq. (201) into series near the point \(\varPhi = 0\), after simple transformations we obtain the approximate expression

$$\begin{aligned} U(r, \boldsymbol{\varPhi }) \approx& - D \biggl[ \biggl( \frac{r_{0}}{r} \biggr) ^{12} -2 \biggl( \frac{r_{0}}{r} \biggr) ^{6} \biggr] - \frac{4 D a^{2}}{r^{2}} \biggl[ 11 \biggl( \frac{r_{0}}{r} \biggr) ^{12} -5 \biggl( \frac{r_{0}}{r} \biggr) ^{6} \biggr] \\ &{} - \frac{32 D a^{3}}{r^{3}} \biggl[ 14 \biggl( \frac{r_{0}}{r} \biggr) ^{12} -5 \biggl( \frac{r_{0}}{r} \biggr) ^{6} \biggr] \times \biggl\{ \bigl( \varPhi ^{2} - \varPhi _{z}^{2} \bigr) \biggl( \frac{2}{3} + \frac{15 \varPhi _{z}^{2} - 17 \varPhi ^{2}}{36} \biggr) \\ &{} - \frac{\varPhi _{z} (\varPhi _{z} + 3 \varPhi _{1}) (\varPhi _{z} + 3 \varPhi _{2}) (\varPhi _{z} + 3 \varPhi _{3})}{24} + \frac{(\varPhi _{1} - \varPhi _{2}) (\varPhi _{2} - \varPhi _{3}) (\varPhi _{3} - \varPhi _{1})}{4 \sqrt{3}} \biggr\} , \end{aligned}$$
(202)

from which it is seen that the point \(\varPhi = 0\) is not a singular point of potential (201).

Now we extend the obtained results to the case of the overall motion (including both the spinorial motion and the translational one). In this case, the interaction potential \(U(\boldsymbol{\varepsilon }_{1}, \boldsymbol{\varPhi }_{1})\) has the form

$$\begin{aligned} U(\boldsymbol{\varepsilon }_{1}, \boldsymbol{\varPhi }_{1}) =& - D \biggl[ \biggl( \frac{r_{0}}{\varepsilon _{1}} \biggr) ^{12} -2 \biggl( \frac{r _{0}}{\varepsilon _{1}} \biggr) ^{6} \biggr] - \frac{4 D a^{2}}{ \varepsilon _{1}^{2}} \biggl[ 11 \biggl( \frac{r_{0}}{\varepsilon _{1}} \biggr) ^{12} -5 \biggl( \frac{r_{0}}{ \varepsilon _{1}} \biggr) ^{6} \biggr] \\ &{} - \frac{8 D a^{3}}{\varepsilon _{1}^{6}} \biggl[ 14 \biggl( \frac{r _{0}}{\varepsilon _{1}} \biggr) ^{12} -5 \biggl( \frac{r_{0}}{ \varepsilon _{1}} \biggr) ^{6} \biggr] \Biggl\{ \sum_{k=1}^{4} \bigl( \mathbf{e}_{k} \cdot \tilde{\mathbf{P}}(\boldsymbol{\varPhi }_{1}) \cdot \boldsymbol{\varepsilon }_{1} \bigr) ^{3} - \sum_{k=1}^{4} ( \mathbf{e}_{k} \cdot \boldsymbol{\varepsilon }_{1} ) ^{3} \Biggr\} , \end{aligned}$$
(203)

where the unit vectors \(\mathbf{e}_{k}\) are determined by Eq. (199), and quantities \(\varepsilon _{1}\), \(\tilde{\mathbf{P}}(\boldsymbol{\varPhi }_{1}) \cdot \boldsymbol{\varepsilon }_{1}\) are calculated by Eq. (197). Potential (203) is a generalization of potential (201). The interaction potential (203), as well as potential (201), is obtained with an asymptotic error of order \(O(a^{4})\) compared to the exact interaction potential of the tetrahedrons. Taking into account Eq. (99), it is not difficult to show that

$$ \bigl( \mathbf{e}_{k} \cdot \tilde{\mathbf{P}}( \boldsymbol{\varPhi } _{1}) \cdot \boldsymbol{\varepsilon }_{1} \bigr) ^{3} = - ( \mathbf{e}_{k} \cdot \boldsymbol{\varepsilon }_{2} ) ^{3}, \qquad (\mathbf{e}_{k} \cdot \boldsymbol{\varepsilon }_{1} ) ^{3} = - \bigl( \mathbf{e}_{k} \cdot \tilde{\mathbf{P}}( \boldsymbol{\varPhi }_{2}) \cdot \boldsymbol{\varepsilon }_{2} \bigr) ^{3} , \quad \varepsilon _{1} = \varepsilon _{2}. $$
(204)

Transforming potential (203) in view of Eq. (204) yields the interaction potential \(U( \boldsymbol{\varepsilon }_{2}, \boldsymbol{\varPhi }_{2})\), which has the same structure as potential (203) and can be obtained from it by replacing \(\boldsymbol{\varepsilon }_{1}\) by \(\boldsymbol{\varepsilon }_{2}\) and \(\boldsymbol{\varPhi }_{1}\) by \(\boldsymbol{\varPhi }_{2}\).

We do not give the coordinate representations of potentials (196) and (203) because of their extent and complexity and also due to the fact that the invariant representations of the interaction potentials are more convenient to calculate the interaction forces and the interaction moments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, E.A. On the Use of the Continuum Mechanics Method for Describing Interactions in Discrete Systems with Rotational Degrees of Freedom. J Elast 133, 155–199 (2018). https://doi.org/10.1007/s10659-018-9676-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-018-9676-3

Keywords

Mathematics Subject Classification (2010)

Navigation