Advertisement

Journal of Elasticity

, Volume 133, Issue 1, pp 105–118 | Cite as

Partial Constraint Singularities in Elastic Rods

  • J. A. Hanna
  • H. Singh
  • E. G. Virga
Article
  • 270 Downloads

Abstract

We present a unified classical treatment of partially constrained elastic rods. Partial constraints often entail singularities in both shapes and reactions. Our approach encompasses both sleeve and adhesion problems, and provides simple and unambiguous derivations of counterintuitive results in the literature. Relationships between reaction forces and moments, geometry, and adhesion energies follow from the balance of energy during quasistatic motion. We also relate our approach to the balance of material momentum and the concept of a driving traction. The theory is generalizable and can be applied to a wide array of contact, adhesion, gripping, and locomotion problems.

Keywords

Rods Constraints Adhesion Jump conditions 

Mathematics Subject Classification

74A15 74G70 74K10 74M15 

Notes

Acknowledgements

J.A. Hanna and H. Singh were supported by U.S. National Science Foundation grant CMMI-1462501. E.G. Virga acknowledges the kind hospitality of the Oxford Centre for Nonlinear PDE, where part of this work was done while he was visiting the Mathematical Institute at the University of Oxford.

References

  1. 1.
    Bigoni, D., Dal Corso, F., Bosi, F., Misseroni, D.: Eshelby-like forces acting on elastic structures: theoretical and experimental proof. Mech. Mater. 80, 368–374 (2015) CrossRefGoogle Scholar
  2. 2.
    Bottega, W.J.: Peeling and bond-point propagation in a self-adhered elastica. Q. J. Mech. Appl. Math. 44, 17–33 (1990) CrossRefGoogle Scholar
  3. 3.
    Kinloch, A.J., Lau, C.C., Williams, J.G.: The peeling of flexible laminates. Int. J. Fract. 66, 45–70 (1994) CrossRefGoogle Scholar
  4. 4.
    Majidi, C.: Remarks on formulating an adhesion problem using Euler’s elastica (draft). Mech. Res. Commun. 34, 85–90 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Majidi, C., Adams, G.G.: A simplified formulation of adhesion problems with elastic plates. Proc. R. Soc. A 465, 2217–2230 (2009) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Humer, A., Irschik, H.: Large deformation and stability of an extensible elastica with an unknown length. Int. J. Solids Struct. 48, 1301–1310 (2011) CrossRefzbMATHGoogle Scholar
  7. 7.
    Phungpaingam, B., Athisakul, C., Chucheepsakul, S.: Instability of variable-arc-length elastica subjected to end moment. IES J. A, Civ. Struct. Eng. 5, 85–89 (2012) zbMATHGoogle Scholar
  8. 8.
    Mansfield, L., Simmonds, J.G.: The reverse spaghetti problem: drooping motion of an elastica issuing from a horizontal guide. J. Appl. Mech. 54, 147–150 (1987) ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Stolte, J., Benson, R.C.: An extending dynamic elastica: impact with a surface. J. Vib. Acoust. 115, 308–313 (1993) CrossRefGoogle Scholar
  10. 10.
    Majidi, C., O’Reilly, O.M., Williams, J.A.: On the stability of a rod adhering to a rigid surface: shear-induced stable adhesion and the instability of peeling. J. Mech. Phys. Solids 60, 827–843 (2012) ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    DeSimone, A., Gidoni, P., Noselli, G.: Liquid crystal elastomer strips as soft crawlers. J. Mech. Phys. Solids 84, 254–272 (2015) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Cicconofri, G., DeSimone, A.: A study of snake-like locomotion through the analysis of a flexible robot model. Proc. R. Soc. A 471, 20150054 (2015) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dal Corso, F., Misseroni, D., Pugno, N.M., Movchan, A.B., Movchan, N.V., Bigoni, D.: Serpentine locomotion through elastic energy release. J. R. Soc. Interface 14, 20170055 (2017) CrossRefGoogle Scholar
  14. 14.
    ASTM D6195: Standard test methods for loop tack. ASTM International, West Conshohocken, PA Google Scholar
  15. 15.
    Plaut, R., Dalrymple, A.J., Dillard, D.A.: Effect of work of adhesion on contact of an elastica with a flat surface. J. Adhes. Sci. Technol. 15, 565–581 (2001) CrossRefGoogle Scholar
  16. 16.
    Plaut, R., Williams, N.L., Dillard, D.A.: Elastic analysis of the loop tack test for pressure sensitive adhesives. J. Adhes. 76, 37–53 (2001) CrossRefGoogle Scholar
  17. 17.
    Deserno, M., Müller, M.M., Guven, J.: Contact lines for fluid surface adhesion. Phys. Rev. E 76, 011605 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    Glassmaker, N.J., Hui, C.Y.: Elastica solution for a nanotube formed by self-adhesion of a folded thin film. J. Appl. Phys. 96, 3429–3434 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    deBoer, M.P., Michalske, T.A.: Accurate method for determining adhesion of cantilever beams. J. Appl. Phys. 86, 817–827 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    Pamp, A., Adams, G.G.: Deformation of bowed silicon chips due to adhesion and applied pressure. J. Adhes. Sci. Technol. 21, 1021–1043 (2007) CrossRefGoogle Scholar
  21. 21.
    Py, C., Reverdy, P., Doppler, L., Bico, J., Roman, B., Baroud, C.N.: Capillarity induced folding of elastic sheets. Eur. Phys. J. Spec. Top. 166, 67–71 (2009) CrossRefGoogle Scholar
  22. 22.
    Hure, J., Audoly, B.: Capillary buckling of a thin film adhering to a sphere. J. Mech. Phys. Solids 61, 450–471 (2013) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Elettro, H., Grandgeorge, P., Neukirch, S.: Elastocapillary coiling of an elastic rod inside a drop. J. Elast. 127, 235–247 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Singh, H., Hanna, J.A.: On the planar elastica, stress, and material stress. arXiv:1706.03047
  25. 25.
    O’Reilly, O.M.: Some perspectives on Eshelby-like forces in the elastica arm scale. Proc. R. Soc. A 471, 20140785 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kienzler, R., Herrmann, G.: On material forces in elementary beam theory. J. Appl. Mech. 53, 561–564 (1986) ADSCrossRefGoogle Scholar
  27. 27.
    Kienzler, R., Herrmann, G.: Mechanics in Material Space. Springer, Berlin (2000) CrossRefzbMATHGoogle Scholar
  28. 28.
    Maugin, G.A.: Configurational Forces. CRC Press, Boca Raton (2011) zbMATHGoogle Scholar
  29. 29.
    O’Reilly, O.M.: Modeling Nonlinear Problems in the Mechanics of Strings and Rods. Springer, New York (2017) CrossRefzbMATHGoogle Scholar
  30. 30.
    Majidi, C., O’Reilly, O.M., Williams, J.A.: Bifurcations and instability in the adhesion of intrinsically curved rods. Mech. Res. Commun. 49, 13–16 (2013) CrossRefGoogle Scholar
  31. 31.
    Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995) CrossRefzbMATHGoogle Scholar
  32. 32.
    Green, A.E., Naghdi, P.M.: A derivation of jump condition for entropy in thermomechanics. J. Elast. 8(2), 179–182 (1978) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    O’Reilly, O.M., Varadi, P.C.: A treatment of shocks in one-dimensional thermomechanical media. Contin. Mech. Thermodyn. 11, 339–352 (1999) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    O’Reilly, O.M.: A material momentum balance law for rods. J. Elast. 86, 155–172 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Hanna, J.A.: Jump conditions for strings and sheets from an action principle. Int. J. Solids Struct. 62, 239–247 (2015) CrossRefGoogle Scholar
  36. 36.
    O’Reilly, O.M.: The energy jump condition for thermomechanical media in the presence of configurational forces. Contin. Mech. Thermodyn. 18, 361–365 (2007) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Maddocks, J.H., Dichmann, D.J.: Conservation laws in the dynamics of rods. J. Elast. 34, 83–96 (1994) MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Noll, W.: La mécanique classique, basée sur un axiome d’objectivité. In: La Méthode Axiomatique dans les Mécaniques Classiques et Nouvelles, Colloque International à Paris, 1959, pp. 47–56. Gauthier-Villars, Paris (1963). Reprinted in [44] Google Scholar
  39. 39.
    Abeyaratne, R., Knowles, J.K.: On the driving traction acting on a surface of strain discontinuity in a continuum. J. Mech. Phys. Solids 38, 345–360 (1990) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Abeyaratne, R., Knowles, J.K.: Kinetic relations and the propagation of phase boundaries in solids. Arch. Ration. Mech. Anal. 114, 119–154 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Broer, L.J.F.: On the dynamics of strings. J. Eng. Math. 4, 195–202 (1970) CrossRefGoogle Scholar
  42. 42.
    Singh, H., Hanna, J.A.: Pick-up and impact of flexible bodies. J. Mech. Phys. Solids 106, 46–59 (2017) ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Burridge, R., Keller, J.B.: Peeling, slipping and cracking–some one-dimensional free-boundary problems in mechanics. SIAM Rev. 20, 31–61 (1978) MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Noll, W.: The Foundations of Mechanics and Thermodynamics. Springer, New York (1974) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical Engineering and Mechanics, Department of Physics, Center for Soft Matter and Biological PhysicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Department of Biomedical Engineering and MechanicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  3. 3.Dipartimento di MatematicaUniversità di PaviaPaviaItaly

Personalised recommendations