Advertisement

Free Damage Propagation with Memory

  • Robert Lipton
  • Eyad Said
  • Prashant Jha
Article

Abstract

We introduce a simple model for free damage propagation based on non-local potentials. The model is developed using a state based peridynamic formulation. The resulting evolution is shown to be well posed. At each instant of the evolution we identify the damage set. On this set the local strain has exceeded critical values either for tensile or hydrostatic strain and damage has occurred. For this model the damage set is nondecreasing with time and associated with damage variables defined at each point in the body. We show that energy balance holds for this evolution. For differentiable displacements away from the damage set we show that the nonlocal model converges to the linear elastic model.

Keywords

Nonlocal model Damage Memory Peridynamics 

Mathematics Subject Classification

74R05 74R10 

Notes

Acknowledgements

The authors would like to thank the anonymous referees for their comments.

References

  1. 1.
    Agwai, A., Guven, I., Madenci, E.: Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171, 65–78 (2011) CrossRefMATHGoogle Scholar
  2. 2.
    Bobaru, F., Hu, W.: The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176, 215–222 (2012) CrossRefGoogle Scholar
  3. 3.
    Dayal, K., Bhattacharya, K.: Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006) ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bobaru, F., Foster, J.T., Geubelle, P.H., Silling, S.A.: Handbook of Peridynamic Modeling. Chapman and Hall/CRC, London (2016) MATHGoogle Scholar
  5. 5.
    Du, Q., Tao, Y., Tian, X.: A peridynamic model of fracture mechanics with bond-breaking. J. Elast. (2017).  https://doi.org/10.1007/s10659-017-9661-2 Google Scholar
  6. 6.
    Emmrich, E., Phust, D.: A short note on modeling damage in peridynamics. J. Elast. 123, 245–252 (2016) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Emmrich, E., Weckner, O.: On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5, 851–864 (2007) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Foster, J.T., Silling, S.A., Chen, W.: An energy based failure criterion for use with peridynamic states. Int. J. Multiscale Comput. Eng. 9, 675–688 (2011) CrossRefGoogle Scholar
  9. 9.
    Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007) CrossRefGoogle Scholar
  10. 10.
    Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010) CrossRefMATHGoogle Scholar
  11. 11.
    Jha, P.K., Lipton, R.: Numerical analysis of peridynamic models in Hölder space. arXiv:1701.02818 (2017)
  12. 12.
    Lipton, R.: Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elast. 117, 21–50 (2014) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lipton, R.: Cohesive dynamics and brittle fracture. J. Elast. 124(2), 143–191 (2016) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lipton, R., Silling, S., Lehoucq, R.: Complex fracture nucleation and evolution with nonlocal elastodynamics. arXiv:1602.00247 (2016)
  15. 15.
    Mengesha, T., Du, Q.: Nonlocal constrained value problems for a linear peridynamic Navier equation. J. Elast. 116, 27–51 (2014) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Oterkus, E., Guven, I., Madenci, E.: Fatigue failure model with peridynamic theory. In: IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, June 2010, 1–6 (2010) Google Scholar
  17. 17.
    Pham, K., Marigo, J.J.: From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models. Contin. Mech. Thermodyn. 25, 147–171 (2013) ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000) ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005) CrossRefGoogle Scholar
  20. 20.
    Silling, S.A., Askari, E.: Peridynamic model for fatigue cracking. Sandia Report, SAND2014–18590 (2014) Google Scholar
  21. 21.
    Silling, S.A., Bobaru, F.: Peridynamic modeling of membranes and fibers. Int. J. Non-Linear Mech. 40, 395–409 (2005) ADSCrossRefMATHGoogle Scholar
  22. 22.
    Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Silling, S.A., Lehoucq, R.B.: Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Silling, S., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010) CrossRefMATHGoogle Scholar
  25. 25.
    Weckner, O., Abeyaratne, R.: The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53, 705–728 (2005) ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Frémond, M.: Non-smooth Thermomechanics. Springer, Berlin (2013) MATHGoogle Scholar
  27. 27.
    Shao, Y., Zhang, Y., Xu, X., Zhou, Z., Li, W., Liu, B.: Crack patterns in ceramic plates after quenching. J. Am. Ceram. Soc. 94, 2804 (2001) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Center for Computation and TechnologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations