Advertisement

Journal of Elasticity

, Volume 137, Issue 2, pp 119–149 | Cite as

Geometric Variational Principles for Computational Homogenization

  • Cédric BellisEmail author
  • Pierre Suquet
Article
  • 126 Downloads

Abstract

The homogenization of periodic elastic composites is addressed through the reformulation of the local equations of the mechanical problem in a geometric functional setting. This relies on the definition of Hilbert spaces of kinematically and statically admissible tensor fields, whose orthogonality and duality properties are recalled. These are endowed with specific energetic scalar products that make use of a reference and uniform elasticity tensor. The corresponding strain and stress Green’s operators are introduced and interpreted as orthogonal projection operators in the admissibility spaces. In this context and as an alternative to classical minimum energy principles, two geometric variational principles are investigated with the introduction of functionals that aim at measuring the discrepancy of arbitrary test fields to the kinematic, static or material admissibility conditions of the problem. By relaxing the corresponding local equations, this study aims in particular at laying the groundwork for the homogenization of composites whose constitutive properties are only partially known or uncertain. The local fields in the composite and their macroscopic responses are computed through the minimization of the proposed geometric functionals. To do so, their gradients are computed using the Green’s operators and gradient-based optimization schemes are discussed. A FFT-based implementation of these schemes is proposed and they are assessed numerically on a canonical example for which analytical solutions are available.

Keywords

Composite materials Helmholtz decomposition Green’s operators Lippmann-Schwinger equation Gradient-based algorithms 

Mathematics Subject Classification

74Q05 74B05 74B20 35A15 

Notes

Acknowledgements

Fruitful discussions with H. Moulinec and J.-C. Michel are gratefully acknowledged. The Authors have received funding from Excellence Initiative of Aix-Marseille University - A*MIDEX, a French “Investissements d’Avenir” program in the framework of the Labex MEC.

References

  1. 1.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013) CrossRefGoogle Scholar
  2. 2.
    Bonnet, M., Constantinescu, A.: Inverse problems in elasticity. Inverse Probl. 21(2), R1 (2005) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011) zbMATHGoogle Scholar
  4. 4.
    Brisard, S., Dormieux, L.: FFT-based methods for the mechanics of composites: a general variational framework. Comput. Mater. Sci. 49(3), 663–671 (2010) CrossRefGoogle Scholar
  5. 5.
    Eyre, D.J., Milton, G.W.: A fast numerical scheme for computing the response of composites using grid refinement. Eur. Phys. J. Appl. Phys. 6, 41–47 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    Gélébart, L., Mondon-Cancel, R.: Non linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials. Comput. Mater. Sci. 77, 430–439 (2013) CrossRefGoogle Scholar
  7. 7.
    Kabel, M., Böhlke, T., Schneider, M.: Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations. Comput. Mech. 54, 1497–1514 (2014) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Khatchaturyan, A.G.: Theory of Structural Transformations in Solids. Wiley, New York (1983) Google Scholar
  9. 9.
    Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Kröner, E.: Statistical Continuum Mechanics. Springer, Berlin (1971) CrossRefGoogle Scholar
  11. 11.
    Ladeveze, P., Leguillon, D.: Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20(3), 485–509 (1983) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ladevèze, P., Pelle, J.P.: Mastering Calculations in Linear and Nonlinear Mechanics. Springer, New York (2005) zbMATHGoogle Scholar
  13. 13.
    Michel, J., Moulinec, H., Suquet, P.: A computational method for linear and nonlinear composites with arbitrary phase contrast. Int. J. Numer. Methods Eng. 52, 139–160 (2001) CrossRefGoogle Scholar
  14. 14.
    Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002) CrossRefGoogle Scholar
  15. 15.
    Monchiet, V., Bonnet, G.: A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast. Int. J. Numer. Methods Eng. 89(11), 1419–1436 (2012) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Moreau, J.J.: Duality characterization of strain tensor distributions in an arbitrary open set. J. Math. Anal. Appl. 72(2), 760–770 (1979) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Moulinec, H., Silva, F.: Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials. Int. J. Numer. Methods Eng. 97(13), 960–985 (2014) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Moulinec, H., Suquet, P.: A fast numerical method for computing the linear and nonlinear properties of composites. C. R. Acad. Sci. Paris II 318, 1417–1423 (1994) zbMATHGoogle Scholar
  19. 19.
    Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157, 69–94 (1998) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Moulinec, H., Suquet, P., Milton, G.W.: Convergence of iterative methods based on Neumann series for composite materials: theory and practice. Int. J. Numer. Methods Eng. 114, 1103–1130 (2018).  https://doi.org/10.1002/nme.5777 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Müller, W.: Mathematical versus experimental stress analysis of inhomogeneities in solids. J. Phys. IV 6(C1), C1-139–C1-148 (1996) Google Scholar
  22. 22.
    Mura, T.: Micromechanics of Defects in Solids. Springer, Berlin (1987) CrossRefGoogle Scholar
  23. 23.
    Nouy, A., Soize, C.: Random field representations for stochastic elliptic boundary value problems and statistical inverse problems. Eur. J. Appl. Math. 25(3), 339–373 (2014) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Obnosov, Y.V.: Periodic heterogeneous structures: new explicit solutions and effective characteristics of refraction of an imposed field. SIAM J. Appl. Math. 59(4), 1267–1287 (1999) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Paris, L.: Etude de la régularité d’un champ de vitesses à partir de son tenseur deformation. In: Séminaire d’Analyse Convexe, Montpellier, 6(12) (1976) Google Scholar
  26. 26.
    Schneider, M.: An FFT-based fast gradient method for elastic and inelastic unit cell homogenization problems. Comput. Methods Appl. Mech. Eng. 315, 846–866 (2017) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Staber, B., Guilleminot, J.: Stochastic modeling and generation of random fields of elasticity tensors: a unified information-theoretic approach. C. R., Méc. 345(6), 399–416 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    Suquet, P.: Plasticité et Homogénéisation. Thèse d’État, Université Pierre et Marie Curie, Paris 6 (1982) Google Scholar
  29. 29.
    Suquet, P.: Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (eds.) Homogenization Techniques for Composite Media, vol. 272, pp. 193–278. Springer, Berlin (1987) CrossRefGoogle Scholar
  30. 30.
    Willis, J.: Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys. Solids 25(3), 185–202 (1977) ADSCrossRefGoogle Scholar
  31. 31.
    Willis, J.: Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21, 1–78 (1981) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Zeman, J., Vondr̆ejc, J., Novák, J., Marek, I.: Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. J. Comput. Phys. 229, 8065–8071 (2010) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, Centrale Marseille, LMAMarseilleFrance

Personalised recommendations