Journal of Elasticity

, Volume 129, Issue 1–2, pp 125–144 | Cite as

A Computational Model of the Biochemomechanics of an Evolving Occlusive Thrombus



Blood clots are fundamental to preventing excessive blood loss in cases of vascular injury and to promoting subsequent wound healing, but also to many disease conditions. The biomechanical properties of clots play important roles in dictating the natural history in health and disease. In this paper, we present a novel multiscale computational model of biological, chemical, and mechanical contributions to the maturation of an occlusive clot from a fibrin-dominated to a collagen-dominated tissue. For an occlusive venous thrombus, simulations show the potential coupling between mechanical deformations and chemical processes, which can result in competing phenomena. This mixture-based framework also promises to guide future experimentation, which is vitally needed to increase our understanding of the complex and important biochemomechanics of clots.


Growth and remodeling Deep vein thrombosis Microsphere Venous thrombosis Multiscale 

Mathematics Subject Classification



  1. 1.
    Adhikari, A.S., Chai, J., Dunn, A.R.: Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J. Am. Chem. Soc. 133(6), 1686–1689 (2011) CrossRefGoogle Scholar
  2. 2.
    Adhikari, A.S., Mekhdjian, A.H., Dunn, A.R.: Strain tunes proteolytic degradation and diffusive transport in fibrin networks. Biomacromolecules 13(2), 499–506 (2012) CrossRefGoogle Scholar
  3. 3.
    Adolph, R., Vorp, D.A., Steed, D.L., Webster, M.W., Kameneva, M.V., Watkins, S.C.: Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 25(5), 916–926 (1997) CrossRefGoogle Scholar
  4. 4.
    Alexandrov, A.V., Molina, C.A., Grotta, J.C., Garami, Z., Ford, S.R., Alvarez-Sabin, J., Montaner, J., Saqqur, M., Demchuk, A.M., Moyé, L.A., et al.: Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N. Engl. J. Med. 351(21), 2170–2178 (2004) CrossRefGoogle Scholar
  5. 5.
    Ateshian, G.A., Albro, M.B., Maas, S., Weiss, J.A.: Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation. J. Biomech. Eng. 133(8), 081005 (2011) CrossRefGoogle Scholar
  6. 6.
    Ateshian, G.A., Maas, S., Weiss, J.A.: Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes. J. Biomech. Eng. 135(11), 111001 (2013) CrossRefGoogle Scholar
  7. 7.
    Ateshian, G.A., Nims, R.J., Maas, S., Weiss, J.A.: Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules. Biomech. Model. Mechanobiol. 13(5), 1105–1120 (2014) CrossRefGoogle Scholar
  8. 8.
    Baek, S., Rajagopal, K., Humphrey, J.: A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128(1), 142–149 (2006) CrossRefGoogle Scholar
  9. 9.
    Barlow, G.H., Summaria, L., Robbins, K.C.: Molecular weight studies on human plasminogen and plasmin at the microgram level. Int. J. Biol. Chem. 244(5), 1138–1141 (1969) Google Scholar
  10. 10.
    Bersi, M.R., Bellini, C., Wu, J., Montaniel, K.R., Harrison, D.G., Humphrey, J.D.: Excessive adventitial remodeling leads to early aortic maladaptation in angiotensin-induced hypertension. Hypertension 67(5), 890–896 (2016) CrossRefGoogle Scholar
  11. 11.
    Breen, E.C.: Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro. J. Appl. Physiol. 88(1), 203–209 (2000) ADSMathSciNetGoogle Scholar
  12. 12.
    Brown, A.E., Litvinov, R.I., Discher, D.E., Purohit, P.K., Weisel, J.W.: Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325(5941), 741–744 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    Bucay, I., O’Brien, E.T. III, Wulfe, S.D., Superfine, R., Wolberg, A.S., Falvo, M.R., Hudson, N.E.: Physical determinants of fibrinolysis in single fibrin fibers. PLoS ONE 10(2), e0116 (2015) CrossRefGoogle Scholar
  14. 14.
    Cohen, I., Gerrard, J.M., White, J.G.: Ultrastructure of clots during isometric contraction. J. Cell Biol. 93(3), 775–787 (1982) CrossRefGoogle Scholar
  15. 15.
    Davie, E.W., Fujikawa, K., Kisiel, W.: The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30(43), 10363 (1991) CrossRefGoogle Scholar
  16. 16.
    Di Achille, P., Tellides, G., Figueroa, C., Humphrey, J.: A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proc. R. Soc. A 470(2172), 20140 (2014). 163 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Diamond, S.L., Anand, S.: Inner clot diffusion and permeation during fibrinolysis. Biophys. J. 65(6), 2622 (1993) ADSCrossRefGoogle Scholar
  18. 18.
    Diaz, J.A., Obi, A.T., Myers, D.D., Wrobleski, S.K., Henke, P.K., Mackman, N., Wakefield, T.W.: Critical review of mouse models of venous thrombosis. Arterioscler. Thromb. Vasc. Biol. 32(3), 556–562 (2012) CrossRefGoogle Scholar
  19. 19.
    Doolittle, R.F.: Fibrinogen and fibrin. Encyclopedia of Life Sciences (2001) Google Scholar
  20. 20.
    Emelianov, S., Chen, X., O’Donnell, M., Knipp, B., Myers, D., Wakefield, T., Rubin, J.: Triplex ultrasound: elasticity imaging to age deep venous thrombosis. Ultrasound Med. Biol. 28(6), 757–767 (2002) CrossRefGoogle Scholar
  21. 21.
    Genet, M., Rausch, M., Lee, L., Choy, S., Zhao, X., Kassab, G., Kozerke, S., Guccione, J., Kuhl, E.: Heterogeneous growth-induced prestrain in the heart. J. Biomech. 48(10), 2080–2089 (2015) CrossRefGoogle Scholar
  22. 22.
    Göktepe, S., Miehe, C.: A micro–macro approach to rubber-like materials. Part III: the micro-sphere model of anisotropic mullins-type damage. J. Mech. Phys. Solids 53(10), 2259–2283 (2005) ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Goldhaber, S.Z., Bounameaux, H.: Pulmonary embolism and deep vein thrombosis. Lancet 379(9828), 1835–1846 (2012) CrossRefGoogle Scholar
  24. 24.
    Heo, S., Xu, Y.: Constructing fully symmetric cubature formulae for the sphere. Math. Comput. 70(233), 269–279 (2001) ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61(1–3), 1–48 (2000) MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Huang, L., Nagapudi, K., Apkarian, R.P., Chaikof, E.L.: Engineered collagen-PEO nanofibers and fabrics. J. Biomater. Sci., Polym. Ed. 12(9), 979–993 (2001) CrossRefGoogle Scholar
  27. 27.
    Humphrey, J., Rajagopal, K.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(03), 407–430 (2002) MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Jerjes-Sanchez, C.: Venous and arterial thrombosis: a continuous spectrum of the same disease? Eur. Heart J. 26(1), 3–4 (2005) CrossRefGoogle Scholar
  29. 29.
    Karšaj, I., Humphrey, J.D.: A mathematical model of evolving mechanical properties of intraluminal thrombus. Biorheology 46(6), 509–527 (2009) Google Scholar
  30. 30.
    Lanir, Y., Namani, R.: Reliability of structure tensors in representing soft tissues structure. J. Mech. Behav. Biomed. Mater. 46, 222–228 (2015) CrossRefGoogle Scholar
  31. 31.
    Lee, Y., Naito, Y., Kurobe, H., Breuer, C., Humphrey, J.: Biaxial mechanical properties of the inferior vena cava in C57BL/6 and CB-17 SCID/bg mice. J. Biomech. 46(13), 2277–2282 (2013) CrossRefGoogle Scholar
  32. 32.
    Lee, Y., Lee, A., Humphrey, J., Rausch, M.: Histological and biomechanical changes in a mouse model of venous thrombus remodeling. Biorheology 52(3), 235–245 (2015) CrossRefGoogle Scholar
  33. 33.
    Libby, P., Theroux, P.: Pathophysiology of coronary artery disease. Circulation 111(25), 3481–3488 (2005) CrossRefGoogle Scholar
  34. 34.
    Lo, K., Denney, W.S., Diamond, S.L.: Stochastic modeling of blood coagulation initiation. Pathophysiol. Haemost. Thromb. 34(2–3), 80–90 (2005) Google Scholar
  35. 35.
    Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: FEBio: finite elements for biomechanics. J. Biomech. Eng. 134(1), 011005 (2012) CrossRefGoogle Scholar
  36. 36.
    Mackman, N.: Triggers, targets and treatments for thrombosis. Nature 451(7181), 914–918 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    Matveyev, M.Y., Domogatsky, S.P.: Penetration of macromolecules into contracted blood clot. Biophys. J. 63(3), 862 (1992) ADSCrossRefGoogle Scholar
  38. 38.
    Rausch, M.K., Humphrey, J.D.: A microstructurally inspired damage model for early venous thrombus. J. Mech. Behav. Biomed. Mater. 55, 12–20 (2015) CrossRefGoogle Scholar
  39. 39.
    Rausch, M.K., Kuhl, E.: On the effect of prestrain and residual stress in thin biological membranes. J. Mech. Phys. Solids 61(9), 1955–1969 (2013) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Rausch, M.K., Kuhl, E.: On the mechanics of growing thin biological membranes. J. Mech. Phys. Solids 63, 128–140 (2014) ADSMathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Rausch, M.K., Zöllner, A.M., Genet, M., Baillargeon, B., Bothe, W., Kuhl, E.: A virtual sizing tool for mitral valve annuloplasty. Int. J. Numer. Methods Biomed. Eng. (2016). doi:10.1002/cnm.2788 Google Scholar
  42. 42.
    Robbie, L., Bennett, B., Croll, A., Brown, P., Booth, N.: Proteins of the fibrinolytic system in human thrombi. Thromb. Haemost. 75(1), 127–133 (1996) Google Scholar
  43. 43.
    Ruberti, J.W., Hallab, N.J.: Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem. Biophys. Res. Commun. 336(2), 483–489 (2005) CrossRefGoogle Scholar
  44. 44.
    Sakalihasan, N., Limet, R., Defawe, O.: Abdominal aortic aneurysm. Lancet 365(9470), 1577–1589 (2005) CrossRefGoogle Scholar
  45. 45.
    Starling, R.C., Moazami, N., Silvestry, S.C., Ewald, G., Rogers, J.G., Milano, C.A., Rame, J.E., Acker, M.A., Blackstone, E.H., Ehrlinger, J., et al.: Unexpected abrupt increase in left ventricular assist device thrombosis. N. Engl. J. Med. 370(1), 33–40 (2014) CrossRefGoogle Scholar
  46. 46.
    Tepole, A.B., Kuhl, E.: Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach towards wound healing. Comput. Methods Biomech. Biomed. Eng. 24, 1–18 (2014) Google Scholar
  47. 47.
    Tong, J., Cohnert, T., Regitnig, P., Holzapfel, G.A.: Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling. Eur. J. Vasc. Endovasc. Surg. 42(2), 207–219 (2011) CrossRefGoogle Scholar
  48. 48.
    Tsai, T.T., Evangelista, A., Nienaber, C.A., Myrmel, T., Meinhardt, G., Cooper, J.V., Smith, D.E., Suzuki, T., Fattori, R., Llovet, A., et al.: Partial thrombosis of the false lumen in patients with acute type b aortic dissection. N. Engl. J. Med. 357(4), 349–359 (2007) CrossRefGoogle Scholar
  49. 49.
    Varjú, I., Sótonyi, P., Machovich, R., Szabó, L., Tenekedjiev, K., Silva, M., Longstaff, C., Kolev, K.: Hindered dissolution of fibrin formed under mechanical stress. J. Thromb. Haemost. 9(5), 979–986 (2011) CrossRefGoogle Scholar
  50. 50.
    Wilson, J.S., Virag, L., Di Achille, P., Karšaj, I., Humphrey, J.D.: Biochemomechanics of intraluminal thrombus in abdominal aortic aneurysms. J. Biomech. Eng. 135(2), 021011 (2013) CrossRefGoogle Scholar
  51. 51.
    Xu, Z., Lioi, J., Mu, J., Kamocka, M.M., Liu, X., Chen, D.Z., Rosen, E.D., Alber, M.: A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys. J. 98(9), 1723–1732 (2010) ADSCrossRefGoogle Scholar
  52. 52.
    Xu, Z., Kamocka, M., Alber, M., Rosen, E.D.: Computational approaches to studying thrombus development. Arterioscler. Thromb. Vasc. Biol. 31(3), 500–505 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringYale UniversityNew HavenUSA
  2. 2.Department of Aerospace Engineering & Engineering MechanicsUniversity of Texas at AustinAustinUSA

Personalised recommendations