Journal of Elasticity

, Volume 128, Issue 2, pp 203–243 | Cite as

Two-Dimensional Elastic Scattering Coefficients and Enhancement of Nearly Elastic Cloaking

  • Tasawar Abbas
  • Habib Ammari
  • Guanghui Hu
  • Abdul WahabEmail author
  • Jong Chul Ye


The concept of scattering coefficients has played a pivotal role in a broad range of inverse scattering and imaging problems in acoustic, and electromagnetic media. In view of their promising applications in inverse problems related to mathematical imaging and elastic cloaking, the notion of elastic scattering coefficients of an inclusion is presented from the perspective of boundary layer potentials and a few properties are discussed. A reconstruction algorithm is developed and analyzed for extracting the elastic scattering coefficients from multi-static response measurements of the scattered field in order to cater to inverse scattering problems. The decay rate, stability and error analyses, and the estimate of maximal resolving order in terms of the signal-to-noise ratio are discussed. Moreover, scattering-coefficients-vanishing structures are designed and their utility for enhancement of nearly elastic cloaking is elucidated.


Elastic scattering Scattering coefficients Elastic cloaking Inverse scattering 

Mathematics Subject Classification

35L05 35R30 74B05 74J20 78A46 


  1. 1.
    Ammari, H., Bretin, E., Garnier, J., Kang, H., Lee, H., Wahab, A.: Mathematical Methods in Elasticity Imaging. Princeton Series in Applied Mathematics. Princeton University Press, NJ (2015) zbMATHGoogle Scholar
  2. 2.
    Ammari, H., Calmon, P., Iakovleva, E.: Direct elastic imaging of a small inclusion. SIAM J. Imaging Sci. 1(2), 169–187 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ammari, H., Chow, Y.T., Zou, J.: The concept of heterogeneous scattering coefficients and its application in inverse medium scattering. SIAM J. Math. Anal. 46(4), 2905–2935 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ammari, H., Garnier, J., Jing, W., Kang, H., Lim, M., Solna, K., Wang, H.: Mathematical and Statistical Methods for Multistatic Imaging. Lecture Notes in Mathematics, vol. 2098. Springer, Cham (2013) zbMATHGoogle Scholar
  5. 5.
    Ammari, H., Kang, H., Lee, H., Lim, M.: Enhancement of near-cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem. Commun. Math. Phys. 317(1), 253–266 (2013) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ammari, H., Kang, H., Lee, H., Lim, M.: Enhancement of near-cloaking. Part II: The Helmholtz equation. Commun. Math. Phys. 317(2), 485–502 (2013) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ammari, H., Kang, H., Lee, H., Lim, M., Yu, S.: Enhancement of near cloaking for the full Maxwell equations. SIAM J. Appl. Math. 73(6), 2055–2076 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ammari, H., Tran, M.P., Wang, H.: Shape identification and classification in echolocation. SIAM J. Imaging Sci. 7(3), 1883–1905 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bao, G., Liu, H.: Nearly cloaking the electromagnetic fields. SIAM J. Appl. Math. 74(3), 724–742 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bao, G., Liu, H., Zou, J.: Nearly cloaking the full Maxwell equations: cloaking active contents with general conducting layers. J. Math. Pures Appl. 101(5), 716–733 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bates, R.H.T., Wall, D.J.N.: Null field approach to scalar diffraction I. General method. Philos. Trans. R. Soc. A 287(1339), 45–78 (1977) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin-New York (1976) CrossRefzbMATHGoogle Scholar
  13. 13.
    Chen, H., Chan, C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D, Appl. Phys. 43(11), 113001 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    Dahlberg, B.E., Kenig, C.E., Verchota, G.: Boundary value problem for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57(3), 795–818 (1988) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dassios, G., Kiriaki, K.: On the scattering amplitudes for elastic waves. Z. Angew. Math. Phys. 38(6), 856–873 (1987) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dassios, G., Kleinman, R.: Low Frequency Scattering. Oxford University Press, Oxford (2000) zbMATHGoogle Scholar
  17. 17.
    Diatta, A., Guenneau, S.: Controlling solid elastic waves with spherical cloaks. Appl. Phys. Lett. 105, 021901 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    Diatta, A., Guenneau, S.: Cloaking via change of variables in elastic impedance tomography (2013). arXiv:1306.4647
  19. 19.
    Farhat, M., Guenneau, S., Enoch, S., Movchan, A.: Cloaking bending waves propagating in thin elastic plates. Phys. Rev. B 79, 033102 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    Ganesh, M., Hawkins, S.C.: A far-field based T-matrix method for two dimensional obstacle scattering. ANZIAM J. 50, C121–C136 (2010) zbMATHGoogle Scholar
  21. 21.
    Ganesh, M., Hawkins, S.C.: Three dimensional electromagnetic scattering T-matrix computations. J. Comput. Appl. Math. 234(6), 1702–1709 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Cloaking devices, electromagnetic wormholes and transformation optics. SIAM Rev. 51(1), 3–33 (2009) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Invisibility and inverse problems. Bull. AMS 46(1), 55–97 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Greenleaf, A., Lassas, M., Uhlmann, G.: Anisotropic conductivities that cannot be detected by EIT. Physiol. Meas. 24(2), 413–420 (2003) CrossRefGoogle Scholar
  25. 25.
    Greenleaf, A., Lassas, M., Uhlmann, G.: On nonuniqueness for Calderón’s inverse problem. Math. Res. Lett. 10(5), 685–693 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hu, G., Liu, H.: Nearly cloaking the elastic wave fields. J. Math. Pures Appl. 104(6), 1045–1074 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland Publishing Company, Amsterdam-New York-Oxford (1979) Google Scholar
  28. 28.
    Leonhardt, U.: Optical conformal mapping. Science 312(5781), 1777–1780 (2006) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lim, M., Yu, S.: Reconstruction of the shape of an inclusion from elastic moment tensors. In: Mathematical and Statistical Methods for Imaging. Contemp. Math., vol. 548, pp. 61–76. Amer. Math. Soc., Providence, RI (2011) CrossRefGoogle Scholar
  30. 30.
    Martin, P.A.: On the connections between boundary integral equations and T-matrix methods. Eng. Anal. Bound. Elem. 27(7), 771–777 (2003) CrossRefzbMATHGoogle Scholar
  31. 31.
    Martin, P.A.: Multiple Scattering: Interaction of Time-Harmonic Waves and N Obstacles. Cambridge University Press, New York (2006) CrossRefzbMATHGoogle Scholar
  32. 32.
    Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006) ADSCrossRefGoogle Scholar
  33. 33.
    Mishchenko, M.I., Videen, G., Babenko, V.A., Khlebtsov, N.G., Wriedt, T.: T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database. J. Quant. Spectrosc. Radiat. Transf. 88(1–3), 357–406 (2004) Google Scholar
  34. 34.
    Mishchenko, M.I., Videen, G., Babenko, V.A., Khlebtsov, N.G., Wriedt, T.: Comprehensive T-matrix reference database: a 2004–2006 update. J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 304–324 (2007) ADSCrossRefGoogle Scholar
  35. 35.
    Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, vols. I and II. McGraw-Hill, NY (1953) zbMATHGoogle Scholar
  36. 36.
    Nédélec, J.C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. App. Math. Sci., vol. 144. Springer, New York (2001) zbMATHGoogle Scholar
  37. 37.
    Norris, A., Shuvalov, A.: Elastic cloaking theory. Wave Motion 48(6), 525–538 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010) zbMATHGoogle Scholar
  39. 39.
    Ottaviani, E., Pierotti, D.: Reconstruction of scattering data by the optical theorem. In: Proc. IEEE Ultrasonics Symp, vol. 2, pp. 917–920. IEEE, Piscataway, NJ (1989). 1989 CrossRefGoogle Scholar
  40. 40.
    Parnell, W.: Nonlinear pre-stress for cloaking from antiplane elastic waves. Proc. R. Soc. A 468(2138), 563–580 (2012) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Pendry, J., Schurig, D., Smith, D.: Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Sevroglou, V., Pelekanos, G.: Two-dimensional elastic Herglotz functions and their applications in inverse scattering. J. Elast. 68(1), 123–144 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Varadan, V.V., Lakhtakia, A., Varadan, V.K.: Comments on recent criticism of the T-matrix method. J. Acoust. Soc. Am. 84(6), 2280–2284 (1988) ADSCrossRefGoogle Scholar
  44. 44.
    Varadan, V.K., Varadan, V.V. (eds.): Electromagnetic and Elastic Wave Scattering – Focus on the T-Matrix Approach. Pergamon Press Inc., Oxford (1980) Google Scholar
  45. 45.
    Varatharajulu, V.: Reciprocity relations and forward amplitude theorems for elastic waves. J. Math. Phys. 18(4), 537–543 (1977) ADSCrossRefzbMATHGoogle Scholar
  46. 46.
    Varatharajulu, V., Pao, Y.H.: Scattering matrix for elastic waves. I. Theory J. Acoust. Soc. Am. 60(3), 556–566 (1976) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Waterman, P.C.: Matrix formulation of electromagnetic scattering. Proc. IEEE 53(8), 805–812 (1965) CrossRefGoogle Scholar
  48. 48.
    Waterman, P.C.: New formulation of acoustic scattering. J. Acoust. Soc. Am. 45(6), 1417–1429 (1969) ADSCrossRefzbMATHGoogle Scholar
  49. 49.
    Waterman, P.C.: Matrix theory of elastic wave scattering. J. Acoust. Soc. Am. 60(3), 567–580 (1976) ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, Faculty of Basic and Applied SciencesInternational Islamic UniversityIslamabadPakistan
  2. 2.Department of MathematicsETH ZürichZürichSwitzerland
  3. 3.Beijing Computational Science Research CenterBeijingChina
  4. 4.Bio Imaging and Signal Processing Laboratory, Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyYuseong-gu, DaejeonKorea

Personalised recommendations