Journal of Elasticity

, Volume 123, Issue 2, pp 245–252 | Cite as

A Short Note on Modeling Damage in Peridynamics

  • Etienne EmmrichEmail author
  • Dimitri Puhst
Research Note


We extend the peridynamic model to inherit irreversible damage. The governing equation is both nonlocal in time and in space and yields an abstract differential equation of Volterra type. We present conditions under which unique global solutions exist.


Nonlocal continuum mechanics Nonlinear models Peridynamics Damage Existence 

Mathematics Subject Classification (2010)

35Q74 74B20 74H20 



The authors would like to thank Robert Lipton for all the valuable discussions.


  1. 1.
    Emmrich, E., Lehoucq, R.B., Puhst, D.: Peridynamics: a nonlocal continuum theory. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations VI. Lect. N. Comput. Sci. Eng., vol. 89. Springer, Berlin (2013) CrossRefGoogle Scholar
  2. 2.
    Emmrich, E., Puhst, D.: Well-posedness of the peridynamic model with Lipschitz continuous pairwise force function. Commun. Math. Sci. 11, 1039–1049 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Emmrich, E., Puhst, D.: Measure-valued and weak solutions to the nonlinear peridynamic model in nonlocal elastodynamics. Nonlinearity 28, 285–307 (2015) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin (1974) zbMATHGoogle Scholar
  5. 5.
    Lipton, R.: Cohesive dynamics and fracture. arXiv:1411.4609v4 (2014)
  6. 6.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000) ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Technische Universität BerlinBerlinGermany

Personalised recommendations