Advertisement

Journal of Elasticity

, Volume 119, Issue 1–2, pp 251–261 | Cite as

Non-Euclidean Ribbons

Generalized Sadowsky Functional for Residually-Stressed Thin and Narrow Bodies
Article

Abstract

The classical theory of ribbons as developed by Sadowsky and Wunderlich has received much attention in recent years. It concerns the equilibrium conformations of thin and narrow ribbons whose intrinsic structure favors a rectangular and flat state. However, the intrinsic structure of naturally formed ribbons will often be more complicated; Spatial variations in the in-plane distance metric can give rise to both geodesic curvature and Gaussian curvature, curving the ribbon in and out of its plane. Moreover, metric variation across the thickness of the ribbon may result in nontrivial reference normal curvatures. The resulting geometric structure is likely to have no zero-energy (stress-free) realizations in Euclidean space.

This paper presents a generalization of the Sadowsky functional, which measures the bending energy of narrow ribbons, for the case of incompatible ribbons (having no stress-free configuration). Specific solutions to special cases where the reference normal curvatures vanish, and for a naturally curved developable ribbon are presented and the resulting twist-stretch relations are discussed.

Keywords

Non-Euclidean plates Residual stress Ribbons Sadowsky 

Mathematics Subject Classification (2010)

74K20 74K25 53A05 

Notes

Acknowledgements

I would like to thank D. Biron, O. Feinerman, M. Moshe and T.A. Witten for helpful discussions and M. Dias and B. Audoly for providing me with a copy of their manuscript ahead of print and for helpful comments.

References

  1. 1.
    Dias, M.A., Audoly, B.: arXiv preprint (2014). arXiv:1403.2094. doi: 10.1007/s10659-014-9487-0
  2. 2.
    Starostin, E.L., Van der Heijden, G.H.M.: Nat. Mater. 6(8), 563 (2007) CrossRefGoogle Scholar
  3. 3.
    Efrati, E., Sharon, E., Kupferman, R.: Phys. Rev. E 83(4), 046602 (2011) CrossRefADSGoogle Scholar
  4. 4.
    Wunderlich, W.: Monatshefte Math. 66(3), 276 (1962) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Efrati, E., Sharon, E., Kupferman, R.: J. Mech. Phys. Solids 57(4), 762 (2009) CrossRefADSMATHMathSciNetGoogle Scholar
  6. 6.
    Armon, S., Aharoni, H., Moshe, M., Sharon, E.: Soft Matter 10(16), 2733 (2014) CrossRefADSGoogle Scholar
  7. 7.
    Armon, S., Efrati, E., Kupferman, R., Sharon, E.: Science 333(6050), 1726 (2011) CrossRefADSGoogle Scholar
  8. 8.
    Chopin, J., Kudrolli, A.: Phys. Rev. Lett. 111(17), 174302 (2013) CrossRefADSGoogle Scholar
  9. 9.
    Efrati, E., Sharon, E., Kupferman, R.: Soft Matter 9(34)(8187), 00002 (2013) Google Scholar
  10. 10.
    Ciarlet, P.G.: An Introduction to Differential Geometry with Applications to Elasticity, 2005th edn. Springer, Berlin (2006) Google Scholar
  11. 11.
    Struik, D.J.: Lectures on Classical Differential Geometry, 2nd edn. Dover, New York (1988) MATHGoogle Scholar
  12. 12.
    Lewicka, M., Reza Pakzad, M.: ESAIM Control Optim. Calc. Var. 17(4), 1158 (2011) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Willmore, T.J.: An Introduction to Differential Geometry, 1st edn. Clarendon, Oxford (1959) MATHGoogle Scholar
  14. 14.
    Sadowsky, M.: Sitz.ber. Preuss. Akad. Wiss. Berl. Philos.-Hist. Kl. 22, 412–415 (1930) Google Scholar
  15. 15.
    Chopin, J., Démery, V., Davidovitch, B.: J. Elast., 1–53 (2014). doi: 10.1007/s10659-014-9498-x
  16. 16.
    Gore, J., Bryant, Z., Nöllmann, M., Le, M.U., Cozzarelli, N.R., Bustamante, C.: Nature 442(7104), 836 (2006) CrossRefADSGoogle Scholar
  17. 17.
    Ðuričković, B., Goriely, A., Maddocks, J.H.: Phys. Rev. Lett. 111, 108103 (2013) CrossRefADSGoogle Scholar
  18. 18.
    Efrati, E., Sharon, E., Kupferman, R.: Phys. Rev. E 80(1), 016602 (2009) CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Plewa, J.S., Witten, T.A.: J. Chem. Phys. 112(22), 10042 (2000) CrossRefADSGoogle Scholar
  20. 20.
    Kamien, R.D., Lubensky, T.C., Nelson, P., O’Hern, C.S.: Europhys. Lett. 38(3), 237 (1997) CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Moakher, M., Maddocks, J.H.: Arch. Ration. Mech. Anal. 177(1), 53 (2005) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Bets, K.V., Yakobson, B.I.: Nano Res. 2(2), 161 (2009) CrossRefGoogle Scholar
  23. 23.
    Thomas, B.N., Lindemann, C.M., Corcoran, R.C., Cotant, C.L., Kirsch, J.E., Persichini, P.J.: J. Am. Chem. Soc. 124(7), 1227 (2002) CrossRefGoogle Scholar
  24. 24.
    Chung, D.S., Benedek, G.B., Konikoff, F.M., Donovan, J.M.: Proc. Natl. Acad. Sci. USA 90(23), 11341 (1993) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael
  2. 2.James Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations